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ABSTRACT

In this report a class of linear quadratic pursuit-evasion games with
bounds on the pursuer's control has been defined. 1In this problem the
pursuer's control appears linearly in the Hamiltonian and singular arcs -
may occur in the solution. A sufficient condition for the existence of
a saddle point for this class of problems is derived.

An indirect numerical technique has been proposed to generate a rapid
and accurate solution to a class of problems with linear state equations
in which singular arcs occur. Then, by linearization this technique is
extended to solve a class of problems with non-linear state equations.

By modifying this technique a second approach has been obtained that can
solve a broader class of singular problems with linear state equations.

The effect of the deviation of one player from the saddle point
strategy on the performance index and the opponent's strategy has been
studied for a two person zero-sum differential game with perfect
information. An inverse system technique is used to determine the
opponent 's strategy by periodically measuring the state or the output
of the system. Then, the proposed technique for singular problems is
applied periodically to generate an approximate closed loop solution
(which takes into consideration the deviation of the opponent from
the saddle point trajectory) to achieve better performance than simply
following the optimal open loop solution. A numerical example is
presented to illustrate the efficiency of the proposed algorithm,
and, comparisons have been made between the results of the open loop

and closed loop solutions.
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CHAFPTER 1
INTRODUCTION. REVIEW AND CIASSIFICATION OF GAMES
SCOPE OF THE DISSERTATION

In the literature of‘ zero-sum differential game theory a great
deal of attention has been directed towards the pursuit-evasion games.
This is due to applicability of this theory to military oriented prob-
lems or physical problems in areas such as engineering and economics,
In many problems in these areas sigmilarity is a source of difficulty
for obtaining an exact solution. Singular arcs quite oftemn occur in
problems when one or more ccmpongnts of the controls appear linearly
in the Hamiltonian function. Some effort is required to study differ-
ential games with singular arcs and to find an efficient technique to
generate an accurate solution. Analytical solutions, in general, can-
not be found except for linear quadratic and a few simple non-linear
differential game problems, Therefore, this research is focused on
the canﬁ:.tationa.l aspects of the singular problems, Our effort is to
£ind an efficient technique with accuracy and rapid convergence which
can be used for on-line purposes.

A caman' approach to the zero-sum differential game is to find a
joint optimal solution for which sach player assumes the other player
is rational and uses his optimal strategy. Although this assumption

basically is correct there are many reasons wvhy a player may not be

" le to £ol' w the exact saddle point solution. For example, bias error

in ** . consroller, a lack of accuracy in the computational technique or
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suboptimal playing of players will cause some deviation fram the real
optimal trajectories.

One way that a player can take partial advantage of the deviation
of the opponent from the optimal open loop strategy is to measure the
state of the game periodically and at each time .of measurement apply
thé saddle point strategy assuming the other player plays optimally.

It would be more desirable to find out the oppenent's non-optimal
strategy (if it is possible) and consider this strategy as an additionai
known input to the system and solve a one-sided optimization problem,
By this method one can gain more than he could by using his own optimal
open loop policy.

In differential games the strategy of the opponent can be deter-
mined periodically through an inverse system if such a system exists
and there is perfect information of the system states. By periodically
solving an optimal control problem, using the proposed numerical tech-
nique an approximate closed-loop strategy dependent solution can be
;)bta.ined. for singular problems.

In order to put the present work in perspective we briefly review

the highlights of the game theory in this chapter. *

1.1 Review and Classification of Games

In the game theory there are different classification schemes,
One of the proposed shcemes is as such:

Static Games, which are not associated with time, and

Dynamic Games, which have time evolution. All kinds of game problems

are based on the ~ mcept of optimization theory.




Both static and dynamic optimization problems consist of three des-

T e
PAYY .

l criptive elements which were defined by Ho( n) in the framework of

5 Generalized Control Theory. These are payoff functions or performance
index, controller, and avaialable data to the controller. Once these
elements are specified, further classifications can be made,

Static games can be continuous or discrete. In a continuous static

game, the payoff function is expressed as a continuous algebraic rela-
tionship and there a.re infinite numbers of strategies for each player.
The discrete static game is sometimes called a matrix or bimatrix game,
In these types of games thc;-.re are finite. numbers of strategles for each
player. If the sum of the payoffs to each of the players is zero, the
game 1is a zero sum game, otherwise it ;L_s' a non-zero-sum game, If the
sum of the payoffs is constant the game is called a constant sum game,

The other major class of games is. dynamic or differential games
in which the state of the game evolves as a continuous function of
time, and the strategies in these games are also continuous functions
of time. In this type of game the system is generally expressed by a
vector differential equation of the form:

x(t) = £(x(t),u(t),v(t),t)

with e given initial state x(to) = X, and a scalar payoff function

. t
» £
Jm h(x(tf),tf) + ] L(x(t),u(t),v(t),t)dt
vhen the state ‘of the game evolves in discrete times and strategies are

also implemented in discrete time, then. the game is called a discrete

.
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differential game. In this type of game the dynamic system is generally
expressed by a vector difference equation of the form:

*ga = (Xgoig VoK)

with a given initial state x(0) = x. and a scalar payoff function

0
K-1
J = h(’non) +* 2 L(xK’uK’vK’K)
K=0 .

Games can be categorized according to the information data to the
controllers, When each player has perfect information about the state
of the game, the system structure and the other player's payoff

function, then, the game is called a perfect information game. If some

of the states are not measurable in the game and/or parameters of the

game are unknown (at least to one player) an imperfect information

game results. The game is called stochastic game if at least one

player has uncertain or randam knowledge of some states of system's
parameters,

Games can be classified according to the goal of the game.

Game of Kind or Qualitative Game, In this game the payoff func-

tion of the game is usually expressed in a discrete way as a win or
loss. For example, the caputre occurs or does not occur in a pursuit-

evasion game,

-------------
'''''
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Game of Degree or Quantitative Game. In this type of game the

payoff is usually a continuous functional. For example, in a pursuit-
evasion game, one player tries to minimize and the other tries to
maximize the separation distance at some final time, It is assumed
that a capture does not occur during the game,

Strategies which are used in dynamic games can be classified as:

1. Open Loop Strategies, in which controls are functions of

time and initial conditions, e.g., u = u(t,xo,to). The disadvantage
of this kind of strategy in dynamic game problems 4is the inability to
take advantage of non-optimally playing of the opponents. This
strategy can be identified for the entire time of the game before the
game starts,

2, Closed Loop Strategies, in which controls are functions of

time and/or current state, .e.g., u = u(x,t). This kind of strategy

can take partial advantage of non-optimally playing of the opponent,

because it will be assumed that the opponent will play optimally fram
the time of measurement on.

In a differential game problem if a player chooses his strategy
based on information of his opponent non-optimally playing strategy,
he may be able to achieve a better performance than the closed loop
solution., The strategy which is chosen in this manner is called

closed-loop strategy dependent.

Pure and Mixed Strategies. If at each instant of time during the

evolution of the game the values of the strategies are known the game

is called pure strategy game. But if the strategies at each point of




time are randomized and their characteristics are specified by prqbabil-
ity density functions, the game is called mexed strategy game. Pure
strategy games can be considered as a special case of mixed strategy
games in which the probability of same particular controls are equal to
one, Although 1n a static or'a discrete and miltistage game the con-
cept of mixed st:ra.tegy can be easily visualized, in continuous dynamic
games the visualization is very difficult. Thus, it has not found

much application in the analysis of differential games. In dynamic

games pure or mixed strategies can be open loop or closed loop.

1.2 Types of Solutions

As was mentioned earlier in this chapter, games may be classified
as zero-sum Or non-zero sum games,

In zero sum games one player tries tb ninimize and the other player
tries to maximize payoff functions. In such games a saddle point solu-
tion 1s sought such that each player optimizes his objective assuming
the other player does the same, The resulting value of the payoff
function is called the value of the game, The mathematical definition

T

of the saddle point for both static and dynamic games is:

J(u*,v) < J(u*,v*) < J(u,v*)

vhere in a dynamic game u and v are functions of time and/or current
states,

In non-zero-sum games there are different types of solutioms, i.e.,
Nash equilibrium solutions, non-inferior solution (or parato optimal
sets) and minmax solutions.
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o taY e = - - . . . e e .\ “w ‘e . - . AR ~ N * Y At v Pt e T e M - . K} - W . t - N - B
DU SIS BN R ST WA SRR S S TP . I S, WL IR I IPMEAPE. WP T S TP YR SRS SR N SN S, W Tt SN TS0 WA W W UPNE. WP P, I L A U S i S |




.............
...............
........

Nash Solutions. If u, is the strategy for gt Player and

*

Ji(ul,...,un) is his cost functional, then a Nash solution u; 1is

defined by the following relationship:

L

Pl
.
A
L
;
s
y
3

' * * * * *
Ji(ul,...,ui,...,un) sJi(ul’...’ui,.."uN)
vhere

%*
ui¢u1 i= 1,.0.,N

which implies that no player can improve his payoff by unilaterally
deviating fram his Nash solution, provided all other players use their
Nash strategies. This solution has the characteristic of teing pro-
tected against cheating; however; each player should play rationally,
i.e., no player can attempt to increase another player's cost without
regard to his own loss.

Note: When the game is zero sum, i.e., Jl = -Ja the Nash solu-

tion is the same as the saddle point solution.

Noninferior Solutions. It may be possible to achieve simultan-

eously a superior payoff than the Nash solution which was a non-cooper-
ative solution, if certain cooperation among the players is made in a
prescribed manner,

This kind of solution is used in classical game theory and modern
welfare econamics. In this set of solutions no player can achieve a

better pay-off unless it is at the expense of the other player.

. e e e e - . L L. . N L. L. L
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Min-Max Solution. This kind of solution represents a "security

level” for each player. The min.max solution u: for the 1th player

is the strategy which satisfies

Ji(u:) = min mex I (uy,eee0y)  VIAL

ui uJ

This relationship implies that the other players try to do the
th
worst damage to the 1 player -and the ith player tries to gain

the most.

1.3 Review of Methods of Solutions for Differential Games

The study of differential games was initiated by Isaacs in 195%,
His approach was formal and closely resembled the dynamic programming
approach to optimization problems. In 1964 Berkowitz and Fleming
applied a calculus of variation technique to a simple differential
game, Iater on Berkowitz treated a wider class of differential games
by the same technigue., More recently functional analysis has been
applied to differential game problems as a rigorous approach, and

certaln highly mathematicsl problems without direct physical inter-

pretation have been solved by this approach (Freedm.n(a)) .

T
[ IR

Geametric approach is another rigorous and interesting technique to

differential games which provides same insight into the problems and

T r a9
LIS JI:G.. [y

has been used by some authors (Balaquier, Gerald, I..’Le‘l:ma.n(58 )).
In 1969 Bryson and Ho( k) treated a class of zero-sum-linear

quadratic differential games and by the application of the set of

.............................
...................................
............




..........

DR S i ARSI

NEMCAR EY B+« L LLCE AP SN

.....

.......................................

necessary conditions for the saddle point. They obtained a set of
closed loop solutions. Then by forming same auxiliary problems they
verified the existence of the saddle point. In 1970, McFarland used
the same class of problems and, without the assumption of a saddle
point used anottger approach to show the existence of the saddle point.
Although the obtained solutions for this class of problems are analytic-
al, however, the solution to the same class of problems with control
M/w state constraints generally cannot be analytica.l(]'?).

In order to solve problems not having analytical solutions, same
numerical techniques have been proposed to generate optimal open loop
solutions. In these techniques it has been assumed that the saddle
point solution exists and singularity does not occur. Sevéral tech-
niques which are used in optimal control problems have been applied to
differential game problems, including neighboring optimal techniques
(which ete closely associated with successive sweep method), quasi-
linearization, and differential dynamic programming.

There are a few closed loop techniques that have been proposed

for generating a near optimal solution. Anderson(*0742)

bas worked on
an updating technique for generating a near optimal closed loop solu-
tion to a zero sum perfect information differential game by period-
ically updating the solution to the two point boundary value problem
obtained by the application of the necessary condition for the saddle
point solution. Jachimowitz''T) has proposed an sdaptive technique,
based on estimation theory, to determine the non-optimal strategy of
the opponent through the state measurement. Then by converting the

game to a one-sided optimal control problem he generated a near optimal
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closed loop solution for non-singular differential games. Behn and

Ho( 56) and Gonza.lez(he)

have used inverse systems to determine the
opponent strategy for the solution of non-singular stochastic and
deterministic zero sum differential games.

The review of the literature in this area shows that the camputa-
tional aspect of singular game problems requires special attention and

it 1is the subject of this dissertation.

1.4 Objective and Scope of the Dissertation

It is the main purpose of this dissertation to present a tech-
nique that generates an accurate and rapid optimal open loop solution
to a class of singular differential game problems.

In the next chapter some definitions and theorems which are cammon
between sigmular optimal control theory and singular differential game
theory have been introduced., These results are very useful in provid-
ing insight to the form of the singular solutions of the problems. 1In
this chapter we define a new class of two-person zero-sum differential
gemes (generalized pursuit-evasion game) with pure strategy and per-
fect information, which have linear state equations, In this problem
the pursuer's and evader's controls are respectively bounded and un-
bounded and the performance index is quadratic in terms of the state
and the evader's control. The final time is fixed and the game is

considered as a game of degree,

Same conditions for the strict convexity and strict concavity

of the performance index with respect to the pursuer's and the evader's

controls are derived to guarantee the existence of a unique saddle

'''''''''''''''''''''''''''''




point solution in this class of problems.

In Chapter 3 an indirect numerical technique with two approaches
are offered, The .ﬁrst approach can only solve problems with singular
arcs, ’In this technique the sequence of controls in the entire time

i interval of the game are estimated. The solution to the set of two
point boundary value problems (obtained fram the necessary conditions
for optimality) is generated by an iterative procedure using Newton's

' method. This approach iterates only on switching times between control

; arcs and has at least quadratic convergence. This technique is extended

é to a class of non-linear differential games by linearization.

3 The second approach which is somehow similar to the first approach
can also solve linear bang band and highly dimensional problems, The
solution to the set of TPEVP is obtained by iterating on the initial

| costates and switching times between control ares,

e Numerical results of a physical example are reported in this

chapter,

Chapter L4 discusses closed loop on line solutions for this class
of differential games., The concept of the inverse system is introduced.

The existence of the inverse system is discussed and an algorithh is

used which incorporates the necessary and sufficlent condition for its

Tearea 2 L an mm LS an N Se SR E_alaSiah SEa

existence, The proposed algorithm, together with the inverse system is
applied to generate an approximate closed-loop strategy dependent solu-

- tion. Computaticsnal comparisons have been made between the saddle point

solutions and the cases that one player deviates from the saddle point

strateg, and the other plays open loop and closed loop strategies,
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_g | Chapter 5 summarizes all the results obtained in this report.
?

l Advantages and disadvantages of numerical techniques are discussed.

Same areas of work for future research are also recommended,
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i CHAPTER 2
SINGUIAR OPTIMAL CONTROL AND DIFFERENTIAL GAME PROBLEMS

Singular arcs may arise in many optimal control problems. In

. the past two decades singularity has received considerable theoretical
: attention. This problem was defined by Rozonoer (1959) and has been
studied by Johnson and Gibson (1963), Robbins (1966), Goh (1966),
McDonell and Powers (1970). The authors have developed some necessary
conditions and also McDonell and Powers have obtained sufficient
conditions for optimal control assuming there exists a totally sing-
ular extremal. Singular so]ﬁtions in optimal control have bheen thought
by many people to be of only academic interest. However, singular

arcs quite often appear in engineering, econcinics and chemical problems.
Siebenthal and Aris (1964) have shown that optimal singular arcs occur
in chemical reactor startup problems. Optimal trajectories of mass-
varying vehicles which are subjected to aerodynamic forces include
singular arcs., The sounding rocket problem(h') » Saturn Guidance singular

flat earth( 22)

and resource allocation problems are other examples of
singularities. In the following section we will formulate an optimal
control problem and discuss the possibility of occurrence of singular
arcs and later on we will extend this subject to differential game

problems,

2.1 Problem Formulation

The fundamental problem of optimal control theory can be formu-
lated in equivalent forms of Bolza, Mayer and Lagrange. The Bolza
problem is the following:

13 |
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Find the control function u(°*) which minimizes (or maximizes)
the performance functional

| &
1 £
1 J = h(x(tf),tf) + ft L{x,u,t)at (2.1-1)
[ 0
subject to:
q x(t) = £(x(t),u(t),t) (2.1-2)
x(t;) = x, given (2.1-3)

u(.) belongs to the set Y. and t 4s a member of
[tgtels

x 1is an n dimensional state vector. u 1s an m dimensional control

vector, h and I are scalar functions and are assumed smooth. The

control set is defined by

v é {u(-):ui(-) is piecewise continuous in time, lui(-)i < =,

tgSt<ty 1= 1,2,...,m} (2.1-k4)

The initial state and initial time are specified in the final
state and final time may be specified or unspecified.

As a prerequisite to solving this problem by the maximum principle
we define the Hamiltonian as

H(‘xoud.’t) = I'(zyust) + XTf(x,u’t) ) (2.1-5)

»*
Necessary conditions for u +to be an optimal control are

1k
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I £(8) = & @"(6)u"(6),) (2.1-6)
- YOI TR OPYORWORY (2.1-7)
: H(z*(t),u*(t).x*(t),t) < B(x (%) ;u(t) 0 () 5t) (2.1-8)

for all admissible u(t) and for all & ¢ [ty,t,] and boundary con-
ditions

g; (" (5)80) = N (8)1T 62, + [H(X(£,),0 (£,)n" (54) %)
+ g% (x(tp),tp) 10, = 0 (2.1-9)

where ) 1is an n dimensional lagrangian multiplier vector. The
optimal control u should satisfy (2.1-8) and usually extremal u is
obtalned as

%*
u = arg min H(x,u,\,t) (2,1-10)
u

and in the case that there are bounds on the control such that
|u1(t)| < Ki(t) 1=1,2,,..,m (2.1-11)

and the Hamiltonian is linear in terms of uy assuming the components
of the control are independent, the extremal controls can be expressed

as

15
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3 ui(t) - Ki(t)s@ Hu, if Hui(t) $0 for t ¢ [tl,tal (2.1-12)

where [tl,tal belongs to time interval [to’tf]

v ' +1 1if B, <O

' sgn Hui = i (2.1-13)
-. | -1 if By, >0

; Note that there may exist conditions such that Hui = 0 for some non.
i zero time interval. Then we will have problems of singularity. With

respect to this more general problem same basic definitions and theorems

3 of singular optimal control problems are introduced.

Definition 2,1. If one or more cdnponents of the control function u

appear linearly in the Hamiltonian, and there exists a non-zero time
interval [tl,tal in [to,tf] such that the coefficient of at least
one of these components are zero on [tl,tel. Then the control is said
to be singular. In this interval maximum principle (2.1-8) provides no

*
information about the control u and its relationship with state and

* ™
costate x and .

Definition 2.2. let u, be the ith element of the optimal singular

control vector u on the interval [tl,tal belonging to [to,tf],
vwhich appears linearly in the Hamiltonian. Iet 2q be the lowest
order of the time derivative of Hui in which ui appears explicitly

%
|
;
o
E
!

with a coefficient which is not identically zero on the subinterval of

[tl,tal. Then Q is called the order of the singular subarc.

v

16

.......................

...... R et T i | 7-4'_ L - ~._.-_,. . . i A . . S o . ) o -4_-‘;. A .~.‘_ O o
E.I...‘:-*}-‘.‘L':n"_r"._'f‘,‘l'.__'ﬁn_‘,.;:.)_f\,.f.g"' PR A AR A AL TN DL PP P UL P T S Wt N — a -~




. totally singular control function when

then the problem is called partially singular,

0 PR

singular subarc of order g, it is necessary that

2q
g [ig & ]

17

of singular arcs without actual numerical solutions.

Theorem 2.1 (Generalized lLegendre-iclebsch Condition).

Definition 2.3. Assuming all the components ul,uz,...,um of the con-r

!l trol vector u are singular simultanecusly, then u 1is called a

. ' %1} (X3nst) = 0 for ¢ ¢ [tyst,] (2.1-14)
: Definition 2.k, If (2.1-14) holds for arcs in K subintervals of
2 length T,, 1= 1,2,...,K such that

K

131 Ti < tf - to (2.1-15)

So, for the existence of the singular arc it is necessary that the
Hamiltonian be a linear function-of at-least one eomponent of a control
vector. The analysis of such problems is complicated by the fact that
the solution in general consists of same cambination of singular and
non-singular subarcs. The number and sequence of these subarcs are not

mown a priori, and it is almost impossible to establish the existence

The following theorem which is a necessary condition for the opt-
imality of singular subarcs is due to Robbins(Bl) and junction theorems

which are followed are given by McDonell and Powers(al) .

On an optimal

(2.1-16)
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and if only inequality holds it is called strengthened GIC.

! The essence of the proof is given in Appendix A and the complete
‘ proof is found in Reference (31).

Since a°%/ at® mu 1s the lowest time derivative of Hu 1in

l which control u appears explicitly in the general form, we can have
s Tga- Hu(x,n,t) = A(X(t),A(8),t) + B(x(t),A(t),t)u, (2.1-17)
d

A and B as a function of time are defined as

a(t) = A(x(t),n(t),t) (2.1-1:

B(t) = B(x(t),\(t),t) (2.1-19)

The above notations are used in the prcof of the theorems in this

chapter.

2.2 The Junctions Theorems. Although the analysis of totally singular

contrcl problems are rather well developed, in partially singular
control ;‘;roblems the analysis of junction points are not yet fully
understood. Since a useful sufficient condition for such problems is
not available, one has to study the necessary conditions which are
valid in the neighborhood of a junction between singular amd nor-
singular subarcs, It is expected that such conditions can b: used to
eliminate candidate extremals or predict beforehand the way in which

18
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singular and non-singular subarcs must be joined or whether the optimal
i . control is continuous or discontinuous at a junction point.
Assuming the optimal control is well-behaved in a neighborhood of
3 a junction, then the following theorem holds.

Theorem 2.,2. Iet ts be a point at which singular and non-singular
arcs of an optimal control u are joined, and let q be the order of
singular subarcs. Suppose the strengthened GIC condition is satisfied,
and assume that the control is piecewise analytic in a neighborhood of
t,. Iet u(r) (r 20) be the lowest order time derivative of u
which is discontinuous at ts. Then q +r is an odd integer (proof
is given in Appendix A).

Two corollaries follow from Theorem 2.2,

Corollary 1. In Q even problems, assuming u 1is piecewise analytic,
and the strengthened GIC condition is satisfied, then the optimal con-

trol is continuocus at each junction.

Corollary 2. In q odd problems, assuming u is piecewise analytic,
and the strengthened GIC condition is satisfied, then the optimal con-
trol either has a jump discontinuity at each junction or else the
singular control joins the boundary smoothly, i.e. with a continuocus
first derivative.

For Theorem 2,2 strengthened GIC conditions should be satisfied

at the junction point ts. There is also a possibility that the GIC

condition be satisfied with equality at this point. If q 4s the

i 19.
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order of the siggular arc ga{H‘(laQ) = B(t) cannot be identically zero
on the singular subarc. Therefore, in view of analyticity assumptionms,
a derivative of same order of B(t) must be non-zero at time tg

evgn if B(ts) = O, This leads to the generalization of the Theorem 2.2
which 1is sta.fed as a separate theorem to emphasize the important results

of Theorem 2.2,

Theorem 2.3. Iet ¢ s be a point at which singular and non-singular
subarcs of an optimal control u .are joined, and let q be the order
of singular arc. Assume that the control is piecewise analytic in a
neighborhood of t,, and let B(m) (m 20) be the lowest order
derivative of the GIC expression g% Hu(2q) = f which is non-zero at
ts s then

l. 4if m<r, gq+r +m is an odd integer
2. if m>r, -sgn[B(m)(t:)Bm(t;)] = (-1)3FH0

The proof of this theorem is similar to that for Theorem 2.2,
The conclusion of this theorem is that if m > r, a(@) may not

ve continuous at junction ts and if m <r, ﬁ»(m) is continuous at

Junction point ¢t g*
Theorems 2.2 and 2.3 require the assumption of piecewise analy-
ticity of the control in a neighborhood of the Jjunctiom.

This hypothesis is usually satisfied on the singular subarc, but

not always on the nonsingular subarc. Thus, we are led to consider
properties which do not require the assumption of analyticity as stated
in the following theorem.
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Theorem 2,4, Iet u be an optimal control which contains both non-

singular subarcs and piecewise continuous qth order singular subarcs.

1. 1If Hu(aq') # O on the non-singular side of a junction, then
the control is discontinuous.

2, If A=0,B¢40 and K¢ O at a junction then, the control
is discontinucus.

3. If u 1is piecewise continuous on the non-singular subarc
a2 gt . O on the non-singular side of a junctiom,

»
1}
.
'
)
i
l!
°
LY
~
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and B § O at the junction then the control is continuous.

Proof. For Case 1) knowing that 423/ at® mu =0 on the singular
subarc and dzq,/ at2d my ¥ O on the side of nonsingular subarc we
have

alty) £ B(L)K(t) # 0 = alt) +B(t)u(ty)

From this relationship we obtain |us(ts)| ¢ K(t,). Therefore u
is discontinuous,

For Case 2) a(ts) =0 and B(ts) ¢ 0 imply us(ts) = 0, and
since K(t ) ¢ 0, the control is discontimucus.

For Case 3) since a3 /at®™ M« 0 for both singular and

non-singular subarcs, we will have

a(ts) + B(ts)uh(ts) «0= cx(ts) + B(ts)us(ts)

and since B(ts) # 0, then, %(ts) = us(ts)’ Therefore the control

—

is continuous at the junction.
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In order to see how the singular subarc may occur in a problem we

consider a simple scalar example,

2.3 Example of a Singular Control Problem . Find control u to

minimize
te
Je% Io x2(t)at (2.3-1)
subject to .
i(t) = 'u(t) I(to) = xo (2.3-2)
glven
lu| =1 (2.3-3)

vhere tf is fixed final time.

The Hamiltonian is defined

K= -;-‘ x° + (2.3-4)

and the set of necessary and boundary conditions are

A (2.3-5)
):* = -x* (2.3-6)
x*(tf) =0 x(0) = x, (2.3-7)
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The optimal control u* is obtained as the following

' ’ +1 if A(t) <O
us /-1 1f aA(t) >0
undetermined if a(t) = O

If A(t) =0 we will have

A(t) = 0 =>x(t) = 0 =>x(t) = 0 => us(t) =0 (2.3-9)

Also the strengthened GIC condition

(-1) %ﬁu =1>0 (2.3-10)

for singular arcs is satsified.

Now by changing the values of initial condition, final time and
final state, we will consider several different cases.

Case 1. Iet x(0) = 1, tf =1 and x(l) be free, then the solution
will be

u*(t) = -1

X (t) mt+1 for t ¢ [0,1]  (2.3-11)

A(t) = - %'te'-:- t+3

The optimal control and trajectories are shown in Figures (2.l-a)
and (2.1-b).
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Pigure 2.1-a. State and costate trajectories in a nonsingular solution.
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Figure 2,1.b. Nonsingular optimal control.
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We see that with this initial state and final time singularity
does not occur in any interval of the problem.

Case 2. let x(0) = 1, tf = 2 and x(2) be free, then the solution
is obtained as

wit) =1 .

(t) = -t+1 for t ¢ [0,1] (2.3-12)

iy * 1.2 1
’ A () = 3 tT -t + 5

and
i u'(t) =0 for 1<t <2 (2.3-13)
o}
i‘ x*(t) =0
: * for t ¢ [1,2] (2.3-1k)

A(t) =0
The optimal control and trajectories are shown in Figure 2.2-a
and aoa-bo
A
] R
.
‘ »
\ X8
A
b )
! i

} v
: o ) 'y

Figure 2.2-.a. .State and costate trajectories in nonsingular and singular
p . interwvals,
) 25
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Figure 2.2-b., Nonsingular and singular controls,

It 1s noticed that when the final time in Case 1 is increased from 1
to 2, and initial state is the same and final state remains free,

singular arc occurs in the interval t ¢ [1,2].

Case 3. Let x(0) = 1, ty=2 and x(2) = 1. The solution will be

u*(t) = -l
X (t) .t +1 t ¢ [0,1] (2.3-15)
x*(t) -%t2+t -%
w(t) = 41 1<t <2 (2.3-16)
2*(1;) st -1
t ¢ [1,2] (2.3-17)

A (t) = -§t2+t -%

26




The optimal control and trajectories are shown in Figures 2.3-a
md 2.3-b.

g

Figure 2.3-a. State and costate trajectories (nonsingular solution)

ue
;

[
|

Figure 2.3-b, Bang-Bang Control.
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- In this case we have fixed the final state. This causes the

' solution of Case 2 to change fram a singular solution to a bang-bang

2 solution.

. Case . Now we modify Case 3 by increasing the final time fram t, = 2
to tpw 3.

The solution is obtained as

' u*(t) = «1
X (t) = <t +1 t ¢ [0,1] (2.3-18)
* 1.2 1
' A (t) = 3 t T -t + 3
*
u(t) =0 D<t <2 (2.3-19)
' x*(t) =0 l
* t ¢ [1,2) (2.3-20)
A ('t) = 0
u*(t) = 1
. x(t) =t -2 t ¢ [2,3] (2.3-21)
-
- N(E) m-5tTeat o2
»
7
;— The optimal control and trajectories are shown in Figures
5 2.b-a and 2,k-b,
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Figure 2.4-a. State and costate trajectories with singular interval,
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Figure 2,4-b. Bang-singular-bang control.
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It 1s noticed that in Case 3, by changing the final time, the solu-
tion of the problem changes from bang-bang to a solution with singular
arc., Indeed there are many simple changes which can be made to the
effect that singularity will occur or be removed. For example, in
Case 2, if the initial condition is increased fram x(0) =1 to =x(0) = 2
with the same time duration, singular control will be removed fram the
solution and the control solution will stay on the lower bound until the

final time is reached.

Singular arcs have also appeared in differential game problems,

The Hamicidal Chauffeur game(l) is a pursuit-evasion game with the

possibility of singular arc, Problems of Thrust-limited rockets sub-
jected to aerodynamic forces are another example of pursuit-evasion

games with the possibility of singular or intermedlate thrust ares for
either or both pursuer and evader, In the next section we formulate a

differential game problem and consider cases with singular arecs.

&.4 Singular Differential Game Problem

A Bolza type differential game problem can be formulated as the
following

t

£
I(u,v) = h(x(tg),t,) + | L(xu,v,t)at (2.4-1)

t

0

subject to

x(t) = £(x,u,v,t) (2.4-2)
x(to) - X, given, (2.4-3)
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There are two players, (P) 1s trying to minimize J by control
u and (E) is trying to maximize J by control v. It is assumed
that both players have perfect information about the system, and also
each player has partial control over the game,

The problem is to determine u* and v* such that
* * %
J(u,v) <J(u,v) _<_J(u,v*) (2.4-4)
*
holds., The 'solutions specified by u .and v* are optimal and termed

the saddle polat solution.

u(+) and v(s+) respectively belong to the sets U and V., The
final time is assumed to be fixed. h and L are scalur Siackions

aad assumel to vYe smooth., The control sets are defined by

v é {u(-):ui is piecewise contiauous ia tinme lui(-)l <=»

t < t < t i = 1,2’--.,:3} (2D'4"-5)
A . .
V= {v(-):vj(-) is piecewize contimuous in time |vJ(‘)| <=

to St Stf d = 1,2,..-,1.} (2.1"-6)

i the initial state and initial time are fixed and final state is free.

In order to find the saddle point, the Hamiltonian is defined as

H(x,uyv,t) = L{x,u,v,t) + x,Tf(x,u,v,t) (2.4-8)

3l
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where )\ ¢ R® is Iegrangian multiplier,
' Assuming there exists a saddle point solution, the set of

necessary conditions for the saddle point solntions are

£(t) = 2 07t x(t) = xy  (2.49)

S0

»
-

»
-
Py
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‘.
.’
.

a(t) = - %ﬁ-: 4 (2.4-10)
H(x*,)u.*,u*,v,t) s H(X*,K*tu*s"*:t) s H(x*,\*,u,v*,t) (2.k-11)
db(x(t,),t,)

The saddle point solution should satisfy (2.4-11) and usually is
obtained as

*

u = arg min H(x*,u,v*,x_*,t) (2.413)
a

* * *

v = arg max H(x ,u ,v,\ ,t) (2.4-14)
v

In the case that Hamiltoniasn is linear in terms of camponents of
v and u and there are bounds on controls, i.e.

Iui' < Kli i = 1,2,...,1!1 (2ou-15)

Ivjl < Ky, Jm 1,2,00e,7 (2,4-16)
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optimal controls can be expressed as:

* % *

uy = -K) ysen Hui(x SN sU,V ,t) if Hu, $0
i=1,2,...,0

: * * *

vy = Kajsp ij(x s\ su ,v,t) if By, $0

J = 1,2’oco,r (20’*"17)

assuming all camponents of u and v are independent of each other.

Note that similar to the optimal control problems there may exist
conditions such that Hu and Hv or both be equal to zero for same
non-zero time interval in the game. Then we will face the problem of
singularity.

Definition 2.5. If one or more camponents of the control functions u

or v or both appear linearly in the Hamiltonian defined in (2.4-8)

and there exists a non-zero subinterval of time [tl,tal between ty

and tf such that the coefficient of at least one of the control com-

ponents is zero on this subinterval. The control is said to be singular
and this subinterval is said to be a singular interval. The maximm

prineiple (2.4-11) provides no information about these controls and
their relationship with x* and x* in this interval.

% %4 JUONRAIUN

All the definitions in Section 2.1 about the singularity in optimal
t_‘ control problems will hold for singular two-sided problems and
Anderson(38) has derived necessary conditiona for optimality of singular
,@. arcs in differential games which are exactly the same as necessary
F™
s

T
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conditions for optimality of singular control problems. Thus, the
l analogoof the GIC condition in the two-sided problems are
:

: 2q -
| )% 8 [d Bu| 20 2.14-18
: | (-1) Ty :1?5 uJ ( )

2q -
d {4
(-1)¢ 5&-[;&- Hv| <0 (2.4-19)

4

and the analysis of junction points carries over as well.,

2.5 Derivation of Singular Control. For simplicity of calcuation a

restricted class of nonlinear singular differential games is considered,

Find the saddle point solation u* and v* to the payoff

J = h(x(tf)) (2.5-1)
subject to:
x(t) = £, (x)u + £,(x,v) (2.5-2)
x(t,) = X, @iven (2.5-3)
|ul sk (2.5-4)

where xeRn,'reRr, u 1is scalar, fl and f2 are n x 1 wvector -
value functions at least n times differentiable with respect to x,

h 1s a smooth scalar function, and tr is fixed. Assiming the saddle
point solution exists, the set of necessary conditions are obtained as

the following.
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Define the Hamiotonian:

T
H(x,A,u,v) = & £y (x)u +272,(x,v) (2,5-5) |
i ‘ since v 1s not required to be bounded., We form
: H.o (2.5-6)

*
and solve for the control v ., (Assuming v can be expressed explicitly
in terms of x and A)

v = w(x,) (2.5-7)

substituting (2.5-7) into the state and costate equations we will have

x(t) = fl(x)u + fa(xsvs(x’\.)) (2.5-8)
A(t) = -£1u - £ (2.5-9)
32, (x) 3t 5(x,v)

where f]x"T and fa - —
For a nonsingular interval

u = -K sgn Hu Hu ¢ O (2.5-10)
and for a singular interval

x = 0 (205"11)
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To £ind the singular control in this interval we consider (2,.5-11) J

i and its respective time derivatives

glé (x4\) = 0 => fol(x) =0

singular control u,. So we take the time derivative of (2.5-12) sub-

i stituting fram (2.5-8) and (2.5-9) for x and A and we have

d oH T
I g (I,X) = 0 => )\ (f]xf?. - fafl) =0

(2.5-13) still does not yield any information about singular control Uge

Iet

"

=&

éﬁﬁ (x,x_) = i’rgx + XTé = A,T(gxfl - hg)u

2 |

+ x,T(gxfa - fzxg) =0

Ir x,T(gxfl - fng) # 0 +the singular control

Tgt. - £, g)
ay(an) - g 2
N (8eTy = T3.8)
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as it is noticed this relationship does not yield any information about

(2.5-12)

(2.5-13)

(2.5-14)

(2.5-15)

(2.5-16)
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l xT(gxfl - £,,8) =0 (2.5-17)

; we continue taking time derivatives of (2.5-17) until u appears

' explicitly with.a nonzero coefficient. In most porblems of interest

th

u appears in the n order time derivative of (2.5-12), If this

control is optimal then it satisfies the strengthened GIC condition.

2.6 Linear Quadratic Singular Differential Game with Bound on Control.

A class of generalized linear pursuit-evasion differential game is
described by the following state equations and performance index

)
E
E
F.
@z

%
£
7=} x(t,5x(t,) +3 jt (="ex - vRV)at (2.6-1)
0
subject to:
x(t) = AX + Bu +Cv (2.6-2)
x(to) = x, given (2.6-3)
lu] sx (2.6-4)

vhere

x n X 1 'state vector
u scalar

v rX Y wvector
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A, B, C are continuous time varying matrices with compatible sizes.

! 8 nxn continuous time varying positive semidefinite matrix.
; Q n X n continuous time varying positive definite matrix.

R r xr continuous time varying positive definitg bounded symmetric
! matrix,

tf fixed final time,

In this class of problems there are two players. Pursuer, (P)
seeks control u to minimize J ,. and evader (E) tries to find con-
trol over ﬁiq_m state.

In the next section we will show that this problem under some

conditions possesses a unique saddle point solution.

2.6.1. Saddle Point Conditions. We now impose some conditions on the

matrices A, B, C, Q and R to assure the existence of the saidle
point.

In this class of linear quadratic differential game for the
existence of s unique saddle point, the performance index should be
strictly convex with respect to u for any fixed v and strictly

concave with respect to v for any fixed .,

F Strict convexity of J with respect to u 1s easily verified

. by the given assumption of positive definiteness of Q and controll-

ability of the system (AB) and since u belongs to a set of convex,

closed and bounded there will be a unique minimum u* for any given v.
To establish concavity of J with respect to v same conditions

are required so that concavity of the second term daminates convexity

e~ ac Ba o oan am A d ot ad Ao n b e
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of the first term of the integrand.

First assuming S = 0, the solution to (2.6-2) is given by

t t
x(t) = q’(t’to)x(to) + Jt Q’(t,T)B(T)u(T)dT + Jt @(t,‘t’)C(T)V(T)dT
0 0

(2.6-5)

Assuming u is fixed and substituting fram (2.6-5) into (2.6-1)

and considering just those terms which are nonlinear in v we will get

t t t
£ .
IV = Jt (j o(t,7)c()v(1)a1) ] Jro ?(t,7)c(T)v(T)dr)dt
0
0 %
ot
- v(t)Rv(t)dt (2.6-6)
)

For strict concavity of J with respect to v assuming (AC) is
controllable it will be sufficlent to show

Ji(v) <0 (2.6-7)
t
N 4 2
v(t) € V such that J [v(t) | “at < .
t
Define 0
w(t) = B"Y/2 (x) Ve e [tg,t,] (2.6-8)
r
1/2
Ibe(e)lly & ¢ ) ey ()13 (2.6-9)
1=l
V
39
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t
NG 4 1/2
Ivllp 2 €], Iwece) 12 at) (2.6-10)

Satisfaction of (2.6-7) is equivalent to showing that

t t ’ t
o
J (JI‘ CP(;t,'r)c(T)R'l/a.W('r)d'r)TQ(j CP(’c,-r)c('r)R"]'/2 w(r)dT)dt
to 0 . to
te
f T
-y W (t)w(t)dt <O (2.6-11)
%

We normalize w(t) by defining

£(1) = %ﬁl (2.6-12)

80

5]l = 1 (2.6-13)

Assuming IIWH2 ¥ 0 and dividing (2.6-11) by lelg and using the

relationship (2.6-12) it is enough to show
t t

f t
[« jt o, Dc(DE Y2 g(r)ana( jt ot,c(n)R 2

% 0. 0

(t)dr)dt <1

(2.6-14)

Using norm inequalities

W et et et G R,
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: |« [ ot e goanTal [ ots,ctar? granas]
‘ & Y0 ' %o
| 0 N
o /2,2 ¢,
: <[ () ez Y3 g, kil ¢ anas
: % %
i 'b t
] (J, Ioteme@x e j ls(e) Far i)t at
3 o %o %o
N t, t '
<] J Io(e,m)e(n)RY 2)arlrl )t at (2.6-15)
% %
Therefore
i | f ( f w(t.-r)c(T)R‘l/ 24 r)an)a( f o, 7)c(DRY 2 (r)an)a]
0
‘bf .
< fto(t - ) ftolkv(t,r)c:r)n"‘/ ®Zarll 2t
; (2.6-16)
F where
? Il = eup joxi (2.6-17)
b k=1 1
So if
£ * 1/2 2
. f (t - t5) § IP(E,7)c(n)R™ “flarlRllat <1 (2.6-18)
. to to
; Tkan

bl

" S ~ Tt N
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- j v (t)Rv(t)at < O (2.6-19)

*o
Note condition (2.6-18) implies the negative definiteness of J
with respect to v which easily results in the concavity of J with
respect to v,
Besides (2,6-18) we must show that . J is radially unbounded in v
in order to establish the existence of saddle points,
It can be verified that J(u,v) -« as |[v|]| ~= for any fixed u

by the following relationships
t t t

t
f (f <P(t,r)c('r)v('r)d-r)TQ(I ?(t,T)c(T)v(T)ar)at
1:0 to tO
L2 e
<[ 7t -t [ ipct,merY 2R et
% % 1
(2.6-20)
and
t
At 2
|, v(erv(v)as = il (2.6-21)
0

Subtracting (2.6-20) from (2.6-19) we will obtain

t
b

@ =2@- [ [ e ki m® (2622
0 0

L2
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i:: From (2.6-18), the above parenthesis is a positive constant number
for any fixed t,. Since R 1is bounded || =« implies that

||w||2 - and fram J!'(v) < -Kllwllg, K>0 J'(v) . So it is con-
cluded that J(u,v) is radially unbounded for any fixed u.

Since for t.his class of problems all the required conditions for
the existence of a saddle point hold, so (2.6-18) is a sufficient con-
dition for the existence of a saddle point.

In a more general case when S £ O the term outside the integral
of the performance index will yield a similar term

t

-~ f
(g - to) | (bR Y22 [l ac (2.6-23)
O .

which is added to the left side of (2.6-18).

2.6.2. Necessary Conditions. Assuming there exist a saddle point

solution, define Hamiltonian as

Ha= % xTQx - % vTRv + ),TAx + ),,TBu + )\ch (2.6-24)

where )\ is an n X 1 lagrangian multiplier vector.

The set of necessary conditions are

o %

- Ax + By + Cv* x(to) = X, (2.6-25)
A m Rx - AN | (2.6-26)
© Bowvam -chheo (2.6-27)
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H(x ,\ su ,v) SH(X ,A ,u,v ) SH(X ,A ,u,7 ) (2.6-28)

Nt Q) = Sx*(tf) (2.6-29)

l The strengthened GIC condition for the optimality of the singular

control of the first order

Hu = BTQB >0 (2.6-30)

5 [

d
| Ju

is satisfled,

From (2.6-27) control v  is obtained as
v = -REh* (2.6-31)

Substituting for v from (2.6-31) in the state equations, the set

of two point boundary value problem will be

[ 2(4) = Ax + Bu - c~3cT) (2.6-32)
A(t) = Rx - ATy (2.6-33)

‘4
x(ty) = X, (2.6-34)
L Mtp) = 5x(t,) (2.6-35)

The control u is obtained as




----------------------------

. +K if BTx <0 for t ¢ [tl,t2]

: 7 .

! u= -K 1f BA >0 for tye [t,t,]
undetermined 1f B'A =0 for t, <t <t,

i

"\ (2.6-36)
5 : As has been mentioned in the interval of time that JH(x,\,u) /du

= BTx = 0, the control is singular and obtained by taking successive
time derivatives of JOH/ou wuntil u_ explicitly appears. To calcu-
late singular control us(x,h) we find

%Ig BTx, =0 ty <t <%, (2.6-37)

%g—g-]’s"rx+BT£=-BTQx-i-(BT-BTA)L-O for t, <t <t

1l 2

(2.6-38)

Continue taking time derivatives of (2.6-38) since BIQB > O then the

singular control appears in the next relationship so that

: u, = Mx + N\ b, <t <ty (2.6-39)
L . vhere
i M = (BYqB) 1(27AQ - BTq + BQ - Blq - B QA) (2.6-41)
¥ = (37q8) "H(8%cr LT + BT2TA - BTAT - %A 4+ pTaaT) (2.6-42)
45
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By substitution of non-singular and singular controls in the state
’ equations we will obtain

. x(t) = Ax - cr™ T

N\ + BK (2.6-43)

- " :- ”i(t) - Qx -0 (2.6-LL4)

which hold on nonesingular interval and

‘ x(t) = (A + BM)x + (BN - CR'J'CT)). (2.6-45)
1 At) = - Qx - AT (2.6-L6)

which hold on singular intervals., In Chapter 3 we will show how to
treat these seta of equations with given and obtained boundary condi-
tions as a multipoint boundary value problem.

Remark. According to Reference (U4) the existence of an optimal v can
be verified through an auxiliary problem assuming u*(t) is an optimal
open loop solution

%
£
max (3 x'(£)8x(t,) + ) (X'Gx - v RV)at) (2.7-47)
v to
subject to:
x(t) = Ax + Bu +Cv (2,6-48)
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u's= u*(t) a time function (2.6-49)

The solution f& v 1is

v(t) = Rl (kx + ) (2.6-50)

where
i) + (kR T +aT)s + KB 8(t,) =0 (2.6-51)

K(t) + ATK + KA +.KCR'10TK +Q=0 (K(t,) =5

(2.6-52)

Since u (t) is bounded from the above we conclude that there

*
will be an optimal v if there exists a finite solution to the Ricatti

equation (2.6-52) for 0 <t < tpe In such a way the existence of a

saddle point to the game (2,1-1) - (2.1-%4) can be verified since there

e o
»
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exists a unique u* in this problem.
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CHAPTER 3
THE COMEUTATION OF. SINGUIAR OPTIMAL CONTROL AND DIFFERENTIAL GAMES

- Nmae e mra e
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Despite the amount of interest in singular control problems
development of the camputational aspect of this problem requires more
attention. Due to the control bounds and control discontinuities some

camputational and analytical difficulties are encountered, To deal

with these kinds of difficulties same speclal considerations shwl;_i_. be
taken in singular problems.

Pagurek and Wood.sid.e( 26) (1968) have presented a direct method
and applied a conjugate gradient method in function space for optimal
control problems with bounds on controls and have solved a problem
with singular arcs. In this technique the region of saturation should
be guessed a priori and some procedure is devised to improve this
guess at each itera.tibn. 'Although the rate of convergence for some

problems has been almost good, the solutlion obtained by this technique

is not accurate. Also junction points between saturated and unsaturated

controls are not cbteined in their exact locations. Ko and Stevens(33)
(1971) applied gradient methods to determine the optimal heat transfer
coefficient distribution along a tubular reactor. This method handles

both singular and bang bang arcs, but it obtains an approximate solu-

—— "
. u' "“'.'
.

tion and in the presence of singular arcs has a very slow rate of con-
vergence when 11'; gets close to the optimum, Jacobson et al. have

R L

transformed the singular optimal control problem to a non-singular

o

problem by adding a quadratic integral function of control to the per-

formance index. This integral function is multiplied by a coefficient

..............
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which tends to zero iteratively during the camputation of non-singular
control, so that, the solution converges to the original singular ome.
Jacobson, Gershwin and -Lele( 1% (1970) have applied differential dynam-
ic programming (Jacobsen 1968(60)) to the. reéulting non-singular prob-
lem and have solved several examples. This technique has given same
satisfactory re.sults, but often computational difficulties arise when
the coefficient of integral tends to zero. In the same reference a
variant of the method called epsilon-aplha (€-a) algorithm, has been
proposed by the authors to overcame this difficulty. With this altern-
ative method another perameter o 1is considered and the coefficient

of the integral does not bave to approach to zero. However, it still
does not guarantee the convergence of the singular optimal control and
accurate results cannct be obtained, In 1972 Edgar and Iapidus(3%)
used the method of Jacobson et al, together with differential dymamic
programming and penalty function, and applied that to discretized
versions of the problem. First they developed the algorithm for linear
control problems, then they extended the technique to non-linear prob-
lems, This technique has the same camputational difficulties as that of
the method of Jacobson et al. The degree of accuracy is low, especially
since the problem is descritized, the exact switching time cannot ve
obtained., Also this method is time consuming for non-linear and same
linear protlems. This technique has the advantage of capability of
handling problems with high dimensions. Anderson(m) (1972) proposed
an indirect metht;d for computations of singular optimal control problems
with first orders of singularity. This technique iterates om initial
costates and a 'prescribed Terminel Error Function is minimized with

k9
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respect to initial costates by a search technigque, The sequence of
non=-singular and singular controls are estimated a priori and at each
iteration switching conditions are checked and adjusted. The accuracy
of this technique is good and the rate of convergence of the method

dei:end.s on tﬁe rate of convergence of the search technique.
Yeo(B‘?) (1975) applied quasilinearization together with (e-a)

algorithms of Jacobson to solve singular problems. This method can
have a quick rate of convergence if the coefficient of the added
quadratic integral is too small. - But, as this coefficient gets smaller
the likelihood of convergence gets smaller too. This method has a
simple programming and faster computational speed than the same method
using differential dynamic programming. In 1976 Edge and Powers(25)

in a function space quasi-Newton algorithm applied Davidon and Broyden

algorithms to optimal control problems with bounded and singular arcs.

Examples indicated that this method is more accurate than gradient and

conjugate gradients, but still the obtained solutions in an approxima-

—_TTYT Ve

tion of the real optimal solutions. In 1973 Aly(??) and Chan applied s
modified quasilinearization technique to totally singular problems and
{ in 1978 Aly( 30) applied the same technique to partially singular prob-
lems with first order singularity. In this technique the sequence of
controls are estimated a priori and at each iteration the initial co-
’ states are adjusted to satisfy the junction conditions. This adjustment
i may accelerate or may decelerate the rate of convergence of the mod-
- ified quasilinearization used in this method.

In the following section we have presented an indirect method with
two approaches. The first approach solves certain groups of problems




vhich can provide n conditions at the junction of singular and non-
singular controls., In these cases we solve a set of multipoint boundary
value problems by iterating only on switching time. This approach has

, . been proposed for linear problems, thus it is extended to nonlinear

' problems, The §econd approach can solve linear singular problems with

P singularities of order of one to n. In this approach an iterative pro-
cedure which iterates on switching time and initial costates is used.,

i This method can directly solve singular differential game problems,

3.1 Numerical Techniques

In totally singular problems, since there is no discontimuity of
the control and junction points, solutions to the set of TPBVP obtained
fram the necessary conditions for the saddle point may be obtained by
I same of the mumerical techniques in the literature. In partially sing-
ular problems special considerations should be taken for the Junection
E conditions and discontinuity of the control. So far, there has not
i been found a general sufficient condition for optimality of the par-

' tially singular control. If there exists a single solution to the

,' problem satisfaction of the necessary conditions is enocugh for the

optimality. But if there are a finite number of solutions, some com-
parison should be made in order to find the optimal one'3"). In tne
proposed technique we estimate the sequence of singular and non-
singular controls in time intervals of the game, In the simplest case

we consider only one junction point. For this case a finite number of

T v e T e e LY YT T T T e
. B

possible sequences may occur. We consider two major different cases,

s

Lnt sl aer |
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Case 1. Game starts with a non-singular arc and at some time ta‘

il switches to a singular arc and terminates on the singular arc at time

tr.

Case 2, Game si‘fa.rts with a control on one bound and then at some time
I ] t, the control switches to the other bound which is the bang bang
, case, For dealing with junction points, it is enough to consider
: these two cases and other cases are basically the same, but more
! tedious when the number of switchings are increased.

In Case 1 since control u is bounded, discontinuity of u will
not cause discontinuity in the states and costates, however, it may
create same corner points at the junction of singular and non-singular

arcs. So, the following relationships hold at each junction point

x(t]) = x(ty) (3.1-1)

A(ED) = A(t]) (3.1-2)

where t3 and ts respectively represent time just before and time
just after the switching time ts, Figures (3.1-a) - (3.1-d) are a
possible scheme of controls, states and costates for a differential
game,

The following relationship holds at any point along

/B (x() A (1) 5t) = O

%?EH (x(t),n(t),t) = O bty st st,  (3.1-3)

Lo st kAo e i

-1
ES;:I%H (x(£),A(t),%) = O
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Schematic Figures
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Figure 3.l-a. Evader's Control
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Figure 3.1-b. Pursuer's Control
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the singular arc including t:. Continuity condition (3.1-1) and
: (3.1-2) together with (3.1-3) implies that (3.1-3) hold at t_ on the
' non-singular arc and provides n conditions at the junction point. So

a set of multipoint boundary value problems is formed. Also we define
a Terminal Error Vactor Function TEF as

TEF = x(tf) - Sx(tf) (3.1-4)

'
{
d
»
-
.
~
4
o
>
in
!

vhich is a boundary condition. Since the time 1:8 is uninown we
establish a procedure that iterates on t..s and drives euclidean norm
n(ts) = ||TEF|| to zero, so that all the necessary and boundary condi-
t:loﬁs for optimality are satisfied. In order to derive the it.erative
relationship for the switching time ¢ g ¥e purturb switching time
around a nmminal value t:.‘ So, the final states and costates are pur-
turbed as much as Ax(tf) and Ax(tf). Pigure (3.2-a,b) shows the

change of final state and costate due to the change of switching time,
If

TEF: - ;}(tf) - s:i(tf) (3.1-5)

L ol

where x‘?(tf) and A (t f) are the final state and costate obtained by
the choice of ti. So

TEF = TEF + ATEF = x5 (t,) + M(b,) - S2i(t,) - S3% (t,)

(3.1-6)

v
T T YT T Y Y S Y
R .
.

We express, ﬁx(tf) and A).(tf) as a function of Ats where

. 1
' | M, = b, -t (3.1-7)
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: For this purpose we solve (2.6-44) and (2.6-45) for the interval
. te [to,t']
!
E: rx=(t,) x(t,)
1. [ ] - [o<t,.to)1[ ]+ [7(t,)] (3.1-8)
h }(ts) K(to)
E A ;GR'],G,T-
[8(t,,5,)] = [.Q I ] [8(t,,t)]  (3.1-9)
#(t ,ty) = I (3.1-10)
and
ntd +BK
'ﬂ(ts) = J ‘(tB,T) [- ]d-r (3.1-11)
to 0

solving (2.6-46) and (2,6-47) we get

x(tf) x(ts)
[ ] = [¥(t,st0)] [ ] (3.1-12)
At,) A(t,) ,
where -
t . A+ EV.cR™ICT
: -
; ¥(tgst,) = I (3.1-1k)

According to (3.1-7) the following relationships hold

‘aaras & gl g
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.' x(t,) = x(tl) + ox(t,)
A(tg) = \(t1) + an(s,) |
i n(t) = wed +ancs) | (3.1.15)

E

Bt ,t) = §(tg,to) +AB(t,)

-

¥t = ¥ltgtd) + au(t) )

where A‘n(ts), Aﬁ(ts) and A‘V(’Gs) can be expressed as a function of

Atg.

From (3.1-8) and (3.1-12) and (3.1-15) the following relationship
can be obtained.

Ax(t, L. o Ax(t
[ ( S)] - [@(tsl,to)][ ( ‘)] +A§(ts)[x(t0)] + AT(,)
M) M(to) M(t,)

(3.1-17)

and

Ax(t Ax(t s
[ ( f)] - [W(tf,tg)][ ( s)] + [Aw(ts)][x( s)] (3.1-18)
Bn(tp) AN(t) NG Y

Expressing M(ts), Mo (t), An(ts) and Ax(to) as functions of
At, to the first order, we can derive Ax(tf) and Ax,(tf) in terms

of At . By substitution from (3.1-18) and (3.1-19) in (3.1-6) we can

obtain TEF and %’mﬂ. at each t,. Therefore we can obtain several

[
iterative relationships to derive TEF to zero.

pTT—
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The switching time can be obtained as

, i+l i d iyvi=1 i
| , bty o=t + [512 n('cs)] n(ts) (3.1-17)
i Or in the least square sense
i+l i aTEF‘T
tS = tJS. + —&—8— . 'EFi (3.1-18)

where

. ' T -1
: _a_ngr_’rg 0 EE ) E (3.1-19)
s s

4

The details of the derivation are given in Appnedix B. To see how
this technique is accomplished, we outline the algoritim as it would

be executed if a digital computer were used,

Algorithm

Step 1. Select a nominal switching time ti s fO < t; < tf assuming

*
this choice 1is sufficiently close to the optimal switching time ts.
Iet the iteration index 1 be zero.

Step 2. Integrate fhe state and costate equations (2.6-Lh) and (2.6-45)
fram %, to t 3/ as a set of TPEVP with boundary conditions (2.5-3)
end (3.1-3) and store x(tl) and A(t]).

— T Tee ¥ WV .

Step 3. Integrate the state of costate equations (2,6-46) and (2.6-47)

from t: to £, a5fset of initial value problems with initial condition

T Y VT ¢

59

v




- — 3 e A
-y A ST RYL WAL LA A e Ot A A A S B S P Ml Aren e B Mat Y -
» v o O L. : AN A A A A A L S e ST e e e e

l.'vz v I','~ S s e e e e e R e T e e T O R T e e e e -
Yo gl el p R R R e
&'.‘N
'-"‘-
LA

&

1
x(ti) and A(t]).

' Step 4. If
TEF(£2) || = ¥ (3.1-20)

where 7y 1is preselected positive constant the problem is solved,
otherwise compute t:"'l fram (3.1=17) and repeat the procedure from

Step 2 to Step L.

3.2 Extension of the Numerical Algorithm to a Class of Non-Linear Games

Iet the set of state and costate equations obtained fram the appli-

cation of the necessary condition for the saddle point be

x(t) = £(x,\,t) (3.2-1)

() = g(x,n,t) (3.2-2)

for non-singular interval [to,tij and for singular interval [ti,tf]

be
T % = £(x,0,t) (3.2-3)
F ) x = &(x,\,t) (3.2-4)
x(to) = x; @glven (3.2-5)
(x(t,)
X(tf) = —Tx—— (3'2'6)
60

.............................




,‘
Define
| dn(x(t,))
: TEF = k(‘bf) -— (3.2-7)
' JTEF
: For an iterative relationship we try to obtain TEF and =5
: 8
for each value of switching time ti.
From Figures (3.3-a,b) we get
(ex(t]) ~ox(t ) - X(t])0t, (3.2-8)
‘ L]
L6>~(t;) ~A(t]) - A(t)at, (3.2-9)
(6x(t]) ~ Ax(t ) + x(t])At, (3.2-10)
1&).(1::) ~ (%) + i(tDAts (3.2-11)

Fhiay g 4 AAR NSO

WY T d . rry
. [

.....
. P T

- LI Y
- -

Linearizing (3.2-1) - (3.2-4) arcund a trajectory obtained due to
the choice of t’s' we will have

&-g;f-sx+g%ax (3.,2-12)
* 3 d
S\ = ﬁ §x + 5% o (3.2-13)
. 3F of
x = <= 6x + = N .(3.2-11&)
. & ..,
= ﬁ X + E% 5\ (302"15)
sx(ty) = 0 (3.2-16)
61




......
..........

AL

1

Sxltsy'——

Axlts)  sx(td)

axit)

¢ ' térats

tf)t'
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Figure 3.3-b. Costate Trajectory and Neighboring Comparison Curve
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If the switching time is perturbed as much as At = t -ti, tnen,
l TEF = TEFL 4 ATEF (3.2-17)
vhere ATEF 4s the increment of TEF a&ue to the increment ﬁts. We
I . can express the following relationship

TEF = ).i(tf) + 8(t,) - g% T :—:% sx(t,) + H.0.T. (3.2-18)

By solving (3.2-12) - (3.2-14%) and substituting in (3.2-18) for
u(tf) and 6x.(tf) in terms of At we find ATEF as a function of
Ata so we will be able to find %T%f .

The iterative formula for the switching time is the same as
(3.1-17) or (3.1-18) and the derivation is given in Appendix B.

The procedure is carried out on a digital computer similar to the
linear case, the only difference is the computation of %?—‘, which 1is
done through linearization according to the Appendix B, :

In the case that there are two switching points the sequence of
singular and non-singular controls are estimated. For example, assume
the game starts with a non-singular arc and at time tsl switches to
a singular arc and at time t82 switches to a non-singular arc and the
game terminates on the non-singular arc. te and ts are imitially guessed

1l 2

and it is tried to drive TEF to zero with respect to ts and ¢ 85
1l

which are independent of each other,

3.3 Second Approach

In some high dimensional problems the number of junction conditions
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may be m <n. In such a case the first approach should be modified
and Terminal Error Function should be driven to zero by iterating on
the switching times and n.m initial costates, i.e., >‘J<t0)’
j=1,2,.e.yn-m. For the class of problems with linear state equations
TEF is expressed as a function of initial costates x(to) and
switching time. In this approach for a camputed switching time ¢,
initial costates }i(to) are also camputed to minimize 'ni(x(to) ,ti) =
th ‘

|ITEF|| N at the 1 iteration, and then at each t  the gradient of

Min).(to) ITEF|| with respect to t_ 1s obtained. In order to satisfy
the junction conditions, at each step of minimization m constraints
on initial costates is considered. By finding the minimum value of N
and its gradient with respect to t_ &t éach tl we will bé able to
£ind a new t:' which yields a smaller N, i.e., (by Newton method).
This procedure is continued until [ITEF|| =0, 4n which case the
problem is solved.

The value of the error at final time for each iteration as a

function of switching time and initial costates is obtained as
R (b)) = BED) + QEENI(e,) + AL (5 B(E A () (3.3-1)
s "0 ) ) o/ *» % s o/ \°e
where B( t:: ), ﬁ(tg') and ﬁ(tié) are functions of switching time given

in Appendix C., Also m conditions at the junction point ylelds m

constraint relatignships on the components of x(to) as

Wao(th(tg) = T(£L) - W_(£))x(ty) (3.3-2)

i .
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where Wi(t-:) and Wa(t:) are m X n matrices and '1'(&:') isan m
vector specified in Appendix C.

The following iterative relationship may be used to find the
op.tima.l switching time

-1
i d
=t + [ nj [ Min nl (3.3-3)
8 3{"-s- 'ts )(t)’ s
i

141
ts

The derivation of 5-2—- R 1is-shown in Appendix C.
g -

The following algorithm is the outline of the steps required to
carry out this approach.

Algoritim

i
Step 1. Select a nominal switching time to <t s <t £ sufficiently

close to the optimal switching time set 1 = O.

Step 2. Compute mink(t ) n(n( 0) t ) from (3.3-1) and (3.3-2).
Matrices R(t PR-ICR P(ti), W(ti), 2(1:") and T(t)) should be
camputed a priori.

Step 3. If

min N(A(t, ),ti) Sy
A(tg) -

where <y 1is a preselected positive scalar number, the problem is
solved, otherwise go to Step L,

Step 4. Compute at [nin\(t y Meg)ly 1 and find t“l fram
(3.3-3) go to Step 2, repeat the m-ocedure
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3.4 Peatures of the Numerical Algorithms

The important features of the algorithms are as follows:

1. Initial Guess. To begin the procedure a guess for initial

switching time should be made. This guess is usually based on the
physical nature of the problem.

2, Storage Requirement. For linear problems only initlal state
‘and terminal conditions and the values of states and costates at junc-
tion points should be stored. For non-linear cases each trajectory
obtained at each iteration is stored as a linearizing trajectory for
the next iteration.

3. Convergence. Since the method has the characteristic of the
Newbon method, 1f t1 1is sufficlently close to the optimal t_ the
method will generally converge quite rapidly. However, if the initial
guess is very poor, the method may not converge at all.

4, Computations Required. In the first approach at each itera-

tion we need to invert an n X n matrix and solve a set of TPBVP and
in the second approach we have to solve a non-linear programing prob-
lem at each iteration.

5. Stopping Criterion. In problems with fixed final states the
procedure is exactly the same as free final state. In this case the
terminal error function will be defined as

TEF = X(tf) - xf

vhere X, is a given vector for final states and the procedure

...........

~. e
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terminates if |ITEF| <+,

Remark. The second approach can directly handle problems in which

oo the sequence of control is bang bang.

3.5 Numerical Example,
Consider the class of generalized prusuit-evasion problems

(2.6-1) - (2.6-"-) vhere S = 0, Q= [é g], Ra= 100, A= [8 é], B = [g],

C= [g], tq = 0, t, = 3.17, x(0) = [8:%0798321 and K= 1. Assuming

both players have perfect information and measurements of the ocutput and

parameters of the system and

y(t) = x(t) (3.5-1)

for this problem, Condition

3.7 %
t( j [leA(t=T) CR‘l/zufdr) IRlldt = 21340 <1
0

(305-2)

and all other required conditions for the existence and uniqueness of
the saddle point are satisfied. For given matrices and t, = 3.17 any
R 221.5 satisfies (3.5-2).

Table (3.1) shows the solution to the matrix Ricatti equation
(2.6-52 ) which is finite in 0 <t < 3,17 4s an alternmative to
(3.5-2) for the uniqueness and the existence of the saddle point. For

the necessary conditions.  Define Hamiltonian

2 2 100 _2
H--;-x.l-c-%xa--?v + NTp F M+ AV (3.5-3)

....................................................
........................................
............................




e k= o~ vl BN K o
.

t, ¢ P
: L 2 ¥ L
- 13 ] 0.0 9.0 o0 0.0
0.12%800 0.12%800 0.00781 0.00701 0.12566
0.29000 0.28¢C0¢C 0.03128 0.03128 C.25526
0.37500 0. 37800 007034 0.0703¢ 039277
04500C0Q 0.850002 Qe125C8 0.12508 0.542%0e
0062800 0.625CS 0+19552 0.19882 0.,70738
O« 78C0C 0. 78C12 Q.2817) 0.2817) 0.8925)
1.000C0 100050 0+50162 0.50162 1.33879
1.25000 1.28183 07857} 0.7857) 1.91451
14300060 180384 113588 1.135%8 2655C3
1« 78000 1.78836 1358378 1.5537a 3,86879
2400000 2001 646 200438 2.0843S 4.78900
2428000 2.27998 261340 2+61340 6.2762S
280020 2.95159 3426997 3.26997 8.12232
2478000 2.83483 e.02727 8.02727 10.40588
3008082 3e 13060 4490663 0.,90463 13.2312%
3.280C0 3e.087082 S.93048 8.93048 16.74236
3.80000 3081443 Te14721 T.1472¢ 28.14589
« 78000 Qe 21 928 8.62019 8.62019 26.78177
3487800 - 8084689 9408308 9.48308 30.14703
4000390 4.69568 10.08359 10.,453%9 34.060814
44 32300 4497182 1185611 11.85611 38.8659¢
4.293000 S« 282268 12.82333 12,82333 43,8%5283
0,37300 $.06367) 16.29998 16,29998 S0.116C0
4,30000 6« 00888 16.04901 16.06901 S7.6468¢C
4.0290C 6+8538089 18.16179 18.16179 66.86786
4.687%0 6. 82130 19.39803 19.3980) 72,2993%
4. 73000 7.13870 2077602 2077602 78.41618
4.81280 7.408828 22433467 2. 33467 05, 35667
4,878C0 T+808741 24,1096¢ 26,1096¢ 93.299%61
0o 93750 8034407 20,1517 20.18178 102.47968
800000 8.87297 20.85209) 28,528093 113.2114)
S.00625¢ 9.49432 3133050 3333480 125.92627
S.12800 10.236 36, 70000 34.7000 141,23239
8.15625 10.66822 36. 64928 3664926 150.11884
5.1075¢C 1114108 38.,810602 J0.0186082 160.0151s
S. 21875 11.67261 0§ .24223 88.24223 171.1084¢C
Se 2850C0 12.27C66 43.9783) 43.9753) 183.61688
S. 20125 1294892 47,0799 47.079%6 197.84625
S.31280 1372521 8C.63733 $0.,63733 214,17308
Se3437S 14.62299 S$4.75710 S4.73710 233.09937
837800 15,6739 39,8831 89.88813 255.30130
S. 39063 1626978 62.3248% 62,3248% 207,.9C869
S.40628 16.92182 68.32309 $3.32309 201.7%118
S.42188 17.63781 60,6184} 68,61 84} 296. 088770
43730 18.02788 25738 72.287%8 313.6543C
S« 45313 193C490 76.29770 76.2977C 332.27839
S.46873 20.28389 80.80933 8C.80933 353.07686
S$.08438 21 .38388 85 .88049 88.88049 376.40655%8
$.8000¢C 22. 628090 91 .62273 91.02273 402.98782

Table 3.1. Matrix Ricatti 3olution for R = 100

T
.
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Costate equations are

Xy = Xy

xzﬂ -Xl - xa

+1 if Mo <0

u
n

1 if x.2>0

ug =X 1f x, =0

along the singular arc the stregnthened GIC condition

2
3 4a dH
=«1<0
S &

is satisfied, and traasversality conditions are

(3.5=4)

(3.5-5) |

(3.5-6)

(3.5-7)

(3.5-8)

(3.5-9)

(3.5-10)

(3.5-11)

(3.5-12)

In this example a sequence of control u_ = -1 for O st < ts

n

and ug = =Xy for 1:s <t < 3.17 with one switching from non-singula:

----------

...............

.....
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control to singular control satisfied all the necessary and trans-
versality conditions for the optimality. To integrate the set of state
and costate equations (2.6-4h4) - (2.6-47) with boundary conditions
(2.6-3), (2.6-29), (2.6-37) and (2.6-38), by the first approach we
used a camputer program in SSP subroutine LBVP for TEBVP and subroutine
HECL for initial value problems. For the initial guess t = .8

after six iterations the problem stopped with

h=6x 107 <107 (3.5-13)
the optimal switching time,
£ =1-195046 ~ 1.2 (3.5-1%)
and the performance index,
J = 60243 (3.5-15)

Table 3.2 shows iterative and computer results for this problem.
Tables 3.3-a,b) show camputer printout of the state and costate tra-
Jectories on singular and non-singular intervals, Figures 3,4-3.7
illustrate the behavior of the controls and trajectories. The cam-

putational time at each iteration with IRM 370 was approximately
54 second. '
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Iteration No. Switching Time T n Terminal Error

i s

i t h
8

1 8 56.058021 9.137982

2 .973001 23,236232 2,37076L4

3 1.085023 9.150887 .51561L

b 1.151342 3.262189 .987125

5 1.188061 667985 .005082

6 1.195046 6 x :Lo'6

—rr AT T T
.
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e s e W B R, S 1 B s b BB

Table 3.2, Computation of Switching Time ts
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Saddle Point Solution

Time . x x A

v . : 1l 2 1
3 -0.0cn02 C.59847 " n.s07ce 1.45739
S 0416089 0.65824 c.5082°" 139467
0 c.2006° 0.70C11 0.ac918 1.326A7
2 - . - . ._e300% 0.736%6 £.30993 1.25498
o C.a0020 £.762%0 c.21088 1.17990
o 0.509%0 c.77837 011173 1.1029"
= c.6000¢ 0.78429 2.C114" 1.02669
_— .—De.7002¢ Co78245 -0.%883s Ce9e637
: S C.76662 -3.18818 €.86853
- Qe97CNC G.74281 =-Ce.288%7 279338
- 0.9500¢ 0.72716 -0.33804 0.75862
N - - . . dageece 8.76921 -0.38822 0422971
- 1.052¢0 ~.€8A36 ~C.a38%1 0.68576
& 1.10€0¢ €e 66522 ~0.488C" 2.65191
: 1418693 . 63955 -¢.s5388¢ c.61928
—— e —1a200C% 0.61141 -C.588%¢C 2.5889¢

Table 3.3-a. Numerical Results for Non-Singular Subarc

Time
21 xz ),1

U p— g T-Y-3-1 - Ceb110) -0.58822 C.5882"

$.250C¢C 0.58276 -C+55815 C.55815

1«3CAC% Ce55857 -Ce3297¢C t.5297°

1359C2 0.52977 -0.50257 0.%0257

—_——— 1 LADCEL 8.50529 -=D.8767C .. 0.4267°

- 1.450C¢C 0.482%8 -D.858202 N.482¢C2
« 1.8C0€C0% 0.86%17 -Ce82887 Cea20a7
: 1.607%9 O« 81946 -0+38453 Ce.38a53

—_————le 70 0aC . £e3813%08 030846 . La3asss

- j«87C0OC Ce 35245 =-0.30782 C.3078¢C
o 1 .900"C 0.321238 =-Ce27423 027422

2,C000" 029551 =Ce24381 De2a3s)
4 24100C¢C .Be27261 —~ »Ce21503 .. -Be215C13

2.2000° Ca252008 =Cel8BAC 0.108887
- 230000 Ce23479 «-0a.164406 LYRY- XX X
Re 2.,022%2C" 0.21940 ~0.168176 014176
. —— g o SCLLE Le22619 .2Cal2089 . . _L£L12209
"o 2.620C2 019535 =0,10042 Cel0”a2
", 2.70000 0.18627 =C.0813S8 0981135
LA 2. 080070 Dal 7905 =0.0631¢0 0.0831"7
. — e man ke DCOOC . 817383 ~=Des0aS48 . --DasCaSas
M 32000 0+1699s -N.02832 C.C2832
' 3. C9999 0.1679% =0s01100 O«Cliae
q . : 3,19990 CelOTHS 0.00533 -0.00%33
” L]

.
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Pursuer Saddle Point Strategy
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CHAPTER &
l CIOSED-LOOP STRATEGY DEPENDENT SCTUTION
AND APPLICATION OF INVERSE SYSTEMS IN SINGUIAR PROBLEMS

As was mentioned before, in differential game problems closed-
loop solutions a.re more desirable than open loop solutions.

In a closed loop solution each player's strategy is based upon
information about the current state of his opponent and assumes that
the opponent plays optimally. In the case where one player plays non-
optimally, the opponent might be able to -perfom even better than the
closed loop solution if he can determine the nonoptimal strategy of
the other player. In this case the known strategy of the opponezt can
be assumed as an external input to the system and the gsme problem is

converted to a one-sided optimal control problem, It is obvious that

the performance that can be achieved in such a way would be better than
the performance achieveble either with open loop or closed loop
strategies. The following static example will illustrate how the
deviation of one player in a zero-sum game from the saddle point solu-
tion may affect the payoff of the game and how the opponent can

achieve different performances.

L,1 Example

Con-sider the zero sum game

J(u,v) = w? - v% 4 uv (k.1-1)
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vhere u is minimizing J and v 1is maximizing it.

This problem has a saddle point solution defined by the u and

v* satisfying
%J; -0, g% =0 (4.1-2)
2 2
3°J 3T
=2>0, = .2<0 (4.1-3)
2t o ‘

The saddle point solution is

u* =0, v* =0 (4.1-4%)

and the value of the game is

I v =0 (.1-5)

Now, assume v chooses a strategy other than the saddle point
* -
v =0, e,g. v=1 and u follows the same saddle point strategy

u* = O, Then the value of the game will be

J(u,¥) = -1 (4.1-6)

We note that u has achieved a better performance than the saddle
point case. But u can achieve even a better performance than (4.1-6)

based on the information that Vv = 1, In this case it is enough to

W e . . o et et e T T - PN UR TSI WA Y AP A
................ R v . PR . . . PP 4. -a P Y e
......... e e e T e e A e L SR
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. minimize (4.1-7)

¥ OATYRRA R

= 3,7 e u? 4w -1 (.12-7)
Thus
g Y2 RPN 1=0 (4,1-8)
‘so that
N A 1
.:; U= o § (l"~1°9)
s
' is optimm and
J(4,¥) = -1.25 < -1 (4.1-10)

Consequently u has performed better in comparison with the case
that he used his daddle point strategy.

This example shows even a reasonable approximate knowledge of v's
strategy, can help u +to do better than his saddle point strategy.

For example if Vv = 1 and u has an approximate estimate of v,

e.g., V= ,9, then, going through the steps before to determine the

opt‘mal u,
J(u,¥) = uZ + .9u - .81 (4.1-11)
aJéuzﬂ .20+ .9 (4.1-12)
ﬁ - -.us (h.l-la)
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J(8,¥%) =-1.0125 < <1 (b.1-14)

So, u dis still better off following this control rather that
his saddle point strategy.

\

Remark. In general, sometimes a player may not be able to achieve

better than his saddle point., For example consider the case

Jau-v (4.1-15)

lu| <1 (4.1-16)

wvhere u is minimizing and v 4is maximizing J. The saddle point
solution is

u = -1 v =0 (h-.l-l?)

If v deviates from the saddle point strategy the best strategy
for u 1is to play the saddle point strategy u = -1, for any deviation
of v. This case may occur for dynamic problems in the case that con-
trol u(t) 1is always on one boundary of his control region. But in
cases of bang bang and totally and partially singular wu(t) deviations
of v(t) can effect switching time and some change in singular control
arc and even it may change the whole sequence of singular and non-
singular u(t).

In pursuit-evasion game problems scme methods have been suggested

to determine the opponent's strategy. These approaches may be




Y

categorized as estimation techniques(W) or inverse system tech.:
niques(ss)’ “"8). In the past singularities have been excluded fram
these problems. In this chapter we will utilize the concept of inverse
systems (a.ssumiﬁg its existence) to determine the opponent's control
through a state or output measurement. Thus, together with the pro-
posed technigques of Chapter 3, enables us to generate an approximate
closed loop strategy dependent solution. In the next section we will
discuss the concept of inverse sy3sbems, and their exjistence, and then
we will show how by such a system to determine the strategy of the

opponent.

4,2 Inverse System

4.1l.a Basic Definition. Iet U and Y be sets, A mapping S:U - Y

i3 said to be invertible if there exists a mapping é:u - U such that

88 and 38 are identity mappings on the sets U and § respectively.

In this case 3§ 4s said to be an inverse of 8. Since such an inverse

if it exists, is unique, we will denote the inverse of § by & 1,
The following definition is due to Zadeh and Dessoer in

Reference (3).

4,1.b, Formal Definition. Let 8 and § be characterized by input-

output-state relations of the form

S : y= I(xzu) X ¢ Zx (4,2-1)
g :w=J(z;v) zZ ¢ Zz (k.2-2)
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where u and v are inputs to 8 and 3 respectively, and y and
w represent the corresponding outputs. x and 2z are corresponding
states of each system (the output function space of $ 1is assumed to
be the input function space of § and conversely)., Then & is called
inverse to 8 or 8 iscalled inverse to 8 if and only if to every

gtate x of 8 there exists a state Z, of § such that

I(z3 I(x;u)) = u Va (4.2-3)

and conversely to every state 2z of § there corresponds a state x,

of 8 such that

I(xz; J(z,v)) = v Vv (k.2-4)
If 8 is inverse to 8 then 8 4s dencted by &% and & de-

1

noted by 8 ., Correspondingly, the state z 1

¢ 1s denoted by ., 8§
will be said to be invertible if it has an inverse.

Fram this definition it follows that if (4.2-3) and (L4.2-4) are
satisfied with states XsZys and ZyX, respectively, then they are
also satisfied with the states X 92 and 2 s%.

For this study we will include theorems, without proof, and in the
following we also include several pertinent definitions. For more

detailed study of this subject references (3) and (10) are recommended.

Theorem 4,1. A mapping 8 : U - § 1is invertible if and only if it is

one-to-.one and onto,
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Lemma 4.1, If a mapping 8 : U = § is invertible then g-1 3

invertible and (8'1) -1 S.

Definition 4.2. A mapping 8 : U - 1is said to be
a) Pre-inertible or left invertible if a mapping 2: R(8) - U exists
' such that 82 = T,, where R(8) denctes the range of 8. In such a

case § 1s called a left or Rist-invertible 8 and dencted by & .

b) TFPostinvertible or right invertible if a mapping $ : § -~ U exists
such that 88 = I 1In such a case S is called a right or post-—
inverse of 8 and denoted by SR]'.

Theorem 4.2, If 8 : U -4 is both left and right invertible then 3

1s invertible and 8% = s;l = sf'{l.

In the remainder of this chapter we will consider only line=mr

dynanical systems indicated by the notation

8 = (A,B,C,D) (k.2-5)

This notation specifies the following set of state and output

equations.

x(t) = Ax(t) + Bu(t) (4.2-6)

y(t) = Cx(t) + Du(t) (k.2-7)

vhere x ¢ Rn, u e Rm, Y e R‘Z are the state input and ocutput vectors

respectively. The matrices A, B, C and D are real, in general time
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varying, continuous and of compatible sizes. The 1ni1;13.1 conditions
are assumed to be zero.

We now address ourselves to the issue of the existence of inverse
systesm for (4.2-5), and the construction of such a system if indeed
tﬁey do exist, Before we discuss conditions for the existence of such
inverse systems and the algorithm to construct them, we briefly review
the applications and the literature of this subject.

The concept of inverse systems has found applications in numerous
problems of engineering. Information recovery, in coding theory is
one of the areas in which inverse systems are used, A linear time
invariant dynamical system can work as an encoder for a special type
of code and the post inverse of the system is used as & decoder.

A post inverse system has been used in filtering and estimation
theory in the presence of colored noise., It 1s used to whiten the
colored noise which 1s easier to analyze.

In stochastic differential game problems the pursuer typically
attempts to estimate the state of the evader's system, and then employs
an inverse system to determine the evader's :anut.(ss)

In the deterministic differential games inverse systems have been
used to determine the opponent's strategies from the psrfect measurement
of the state of the system in non-singular problema.(ha)

Other applica‘bi&ns include decoupling of multivariable systems,
network synthesis, networa realization of passive impedences, and two
point boundary value problems,

In the present work we apply this concept to develop a solution to
deterministic linear differential game with singularities,
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Most research which has been done in inverse systems is concernmed

with time invariant systems, Same authors have proposed algorithms

which may be used for specilal classes of differential game problems,
Our need is for some criteria for invertibility of the system and also
an efficient algorithm for construecting _the’xnvgrse system.

Patal(®® (1973) hse obtained a sufficlent condition for invert-
ibility of a sp;cial class of time invariant systews in which m ¢ 4.
This criterion simply tests the rank of the product of two matrices,

One of the most recent works for time invariant systems in the
case of L # m is the work of Sinwat and Fa.llside(so) (1976). They
have proposed an algorithm which is based on the factorization of the
transfer matrix of the system. The criterion for invertibility here,
requires the formation of the transfer matrix and determination of its
rank. Full rank of the transfer matrix is a necessary and sufficient

condition for the applicability of their algorithm.
(51)

Silverman introduced a finite sequential algorithm for time

invariant systems and later on he extended the algorithm to the time

varying systems. Also a sequential test of existence is incorporated
in the algorithm,

4,2.1 Inversion of Linear Time Invariant Systems

With regard to the basic definition of the inverse system let
R[S]b‘m be a ring of polynomial matrices. The linear time invariant
system (4.2-6) and (4.2-7) whose transfer matrix function is

a(8) ¢ R(8]1®® and which is assumed to have full rank, is sald to be

8k
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left invertible if L >m and there exists a system with transfer

function matrix G, (S) ¢ R[S1®™ such’ that 6,(5)6(S) = I_. G, is

L
called left inverse of G(S). Similarly the system is said to be
right invertible if 4 <m and there exists a G(S) « RIS]?® suen

that G(S)GR(S) =1 GR(S) is called the right inverse of G(S).

L.
When L=m the right and left inverses are identical.

The following theorems which have been presented in references
(59) and (50) give some conditions for invertibility of linear time

invariant systems,

Theorem 4.3. A sufficient cu._ition for invertibility of the linear

time invariant systems (A,B,C) is that - rabk(CB) = min(4,m).

Theorem 4.4k, A necessary and sufficient condition for invertibility
of the linear, time invariant system (A,B,C,D) 1s that G(S) has a
full rank.

4,2.2 Inversion of Linear Time Varying Systems - Regular Systems

Roughly speaking a regular system is a system in which D(t) has
a constant ranik,

Given a set of regular linear time varying system

X(t) = A(t)X(t) + B(t)u(t) (4.2-8)

y(t) = C(t)x(%) +D(t)u(t) (k.2-9)

for each given initisl condition x(to) = Xy, Equations (4.2-8) and
(4.29) define a mapping HxO: U - 4. The following theorem applies
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to0 this situation,

Theorem 4.3. Byt U ¥ has a continuous left inverse if and only if

do = rank D(t) =m for Y+t. In this case H has a unique left

MOSRNREY 20 TR R AL

, X0
inverse denoted by LH;;'. So the unique left inverse to the system
l (4.2-8) and (k.2-9) is given by
2(t) = [A()-B(£)DT(£)C(£) 1x(t) + B(£)D(t)y(t)
i x(ty) = x4 (4.2-10)
- -1
u(t) = DY(£)y(t) - DE(t)C(t)x(t) (¥.2-11)

where DI = (DY(£)D(t)) YD (t) and m < 4.

Theorem L.k, on : U - Y has at least one continuocus right inverse

';._:;' if and only if 4 = rank D(t) = £ for Vt, and it is denoted by
-1.

Ron ’

If 4, = rank D(t) £ £ for some % ¢ [‘co,tf]. Then on does

= Vo, P e e
ey  DISTRGE
P Y - - - s .

not have a right inverse (continuous or not).

Theorem k4.5, on t U ~Y has a unique continuous inverse if and only
if dy = rank D(t) em= £ for Y t. The inverse of the system

(4,2-8) and (4.2-9) in the case that D(t) is a square matrix with
full constant rank 1s expressed as:

\
LAY 'lr L _!‘ """‘,"" A Vx A 3 ..Y .l’ .'.
. .

TTY
RS
B

AR

R LR

RN
LR RO
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(2(+) = [A(t)-B(6)D"X(£)C(£) 1x(t) + B(£)D™H(%)y(t)

l x(tg) = X, (k.2-13)
o H {4

o 0 -1 -1

o u(t) = D”T(t)y(t) - DT(L)C(4)x(t) (k.2-14)
N L

In cases above, D(t! had full and constant rank m or 4. Now

we consider cases that m X m matrix D(t) has constant rank but

' 4y <m or  the case where LXm matrix D(t) has dy = rank D(t)
L < min( 4,m).
p 4,2,3 Inversion Algorithm for Construction of the Inverse System
o
) The basis of the Silverman's a.lgori‘l:hm(5 1) exploits the following
theorems by Dolezal.

If D(t) 4is a matrix with a constant rank dg < min(m,4) on

[to,t f] and differentiable then there exists a square non-singular
datrix So(t) such that

S ()D(t) = |-ememe- (L.2-15)

where so(t) is mxm, m< ¢ and 50(1'.) has d, rows and

rank Do(t) = do on [to,tf].

Defining a system So as

,:i AARAOL AR A
. .

¢ ¢y
el

g 2(t) = A(£)x(t) + B(t)u(t) (4.2-16)
# %o
-~ Yo(t) = Co(t)x(t) + Dy(t)u(t) (k.2-17)
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where

(0
t) = t)y(t) =
o = s = |

Now define a matrix differential operator

Idoll 0
Tl B
| “m-a, &

it d1 = m, then the inverse ir found as before,
£ind sl(t) such that

..

..............
..........

» Go(t) 'So(t)C(t) =

)

x(t) +

where Ido is an identity matrix with order do. Then
Fo(t) Cylt)
M.y (t) = =
070 d
I ot €5 (£IA() 46, ()
Consider
Dy(t) ]
dl = rank -
(t)B(%)

&(t)

E(t)

(4.2-18)

The bar and the tilde represent respectively the first do rows
and the last m-d, rows of the matrices Co(t) and yo(t).

(%.2-19)

by (t)

C‘o(t)s(t)

(4.2-20)

(4.2-21)

If 4, <m then we

1

.....

.......
......




ﬁ'o(t) b, (t)
D,(t) = C,(t) = |ee———— (4,2-22)
Eo(t)B(t) 0

and the procedure is continued, then by induction we get

in which Dk(t) has d.k rows with rank Dk = dk

C
ck(t) - [ k(t)}
g, (%)

and _ék(t) has 4, rows and Ek(t) = z:k_l(t), A(t) + ck_l(t) has
m-d.k rows, If d.k<m then
Id'k : 0
- - _——— h.2-26)
Y 7 : (
0 | "ty g

89

x(t) +A(t)x(t) + B(t)u(t) (4,2-23)
& |
yk(t) = ck(t)z(t) +Dk(t)u(t) (.2-24)
where
v, (t b (¢)7 - '
yk(t) = [yk q » Dk(t) = -"E"-- ("".2-25)
?k(t) 0
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(%) € (t) 5. (%)
Mkyk = d = ) X(t) + u(t)
wh® ] [€ Gy (tB(t)
(k.2-27)
where
Craa(t) = E(OA(E) - & (2) (4.2-28)

D (t)

] <m and constant for
€, (£)B(t)

Now if d'k+1 ifdk+1-ra.nk[
t e [to,tf]. Then an m X m non-singular differentiable sk+1(t) can
be found such that:

b (¢) D ()
Dyya(t) = 8, (%) k - E | (h.2-29)
€ (t)B(%) 9

where Dk+1(t) hagé d ., rows and rank Dk+l(t) =d ., 8ad then the
system \sk +1 is defined as

X(t) = A(t)x(t) + B(t)u(t) (4.2-30)
%ﬁ-l:
Tyaa(t) = Cppq (8)x(t) +D . (t)u(t) (k.2-31)
where
yk‘i'l(t) = sk"'l(t)Mkyk(t) (h'2‘32)
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Cp.a(t) = 8 (%) (k.2-33)
. k#1 k+1 Ck(t)A(t) ck+l(t)

Also & .,(t) has d ., rowsand &, has m-d ., rows.

Suppose now that there exists an integer « ‘such that Da has

rank m. Then it is possible to get the inverse in the form

k|
.}i
'
b4
t
]
..'
we
W
i
i
fa
fu
fa
e
Ca
Fa
i
3
5
5
T

2(t) = [A(Y) - BIDL(EIC(8)Ia(t) + B(EDL(t)y (8)  x(tp)exy

(k.2-34)
-1

u(t) = D(E)y(8) =Dy(6)C(E)x(t)  © (1,2-35)

™ .";
]
o'
! .
i~l
]
N
\..
i
r=
'3
[
¥
v
A

where

(9
D(t) = (DX(£)D,(£)) " D(%) and y (t) = ( X s Mgy )¥(E).

If £ <m, then, Dg(t) = Dg(t)(Da(t)DcTz(t))'l and if ¢ =m the
inverse system is found as the form of (L4.2-13) and (4.2-1k4).

Now, a more precise definition of the regular system is the case
vhen matrices D(t) and [B,(t) (& (t)B(t)"1" have constant rank o

t € [to,tf] for k = 0,1,...,n-1.

So it is concluded that the regular system representation (4.2-8)
and (4.2-9) is invertible if there exists a positive integer a <n

such that 4, = m = f. In the case dy=n<¢ the syatem is called
left invertible and in the case da = 4 <m it i3 called right
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invertible, References (54) and (L48) show the necessity proof of the
above results,

)
™
~
N
I
i
o

A

4,3 Determination of Opponent Strategy

In this section we use the results of previous sections to verify

A SRR

o,

the invertibility of the system (2.6-2) and if it exists to construct

-

it and determine control v. We assume each player has perfect infor-
mation about the output or the state of the system.

M RN IEY N
7 ‘.:r:'. o 8
2 BRI RN

“l

»*
Iet u, v and X be the saddle point solution of the differ-

P
LA

ential game (2.7-1) &o (2.7-4) then we have

>

'{‘,f“!’. e

x(£) = A" (8) + BEN(E) + (AW (8)  (h.3-D)
y(8) = 2'(¢) (4.3-2)
X(to) = xo (h03'3)

If ax(t) 4is the deviation of the saddle point state trajectory
due to the deviation of the evader's control Av(t) and 2u(t) is the
change of pursuer's control in response to Av(t), we will have

* \
v(t) = v (t) + &v(t)
*
ult) = u*(t) + (®) L Vite [to,tf] (Lo3-4)
x(t) = x (t) + &x(t)

¥(t) = v () + ay(t)

o

From (4.3-1) and (4.3-4) we get
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Ax(t) = A(t)ax(t) + B(t)ou(t) + c(t)aw(t) (4.3-5)

Ay(t) = ox(t) (4.3-6)

v,

o A
» o3

5

E .
L]

,l

.

3

Ay

We assume the ocutput measurement is taken by the pursuer period-
ically in a small time interval At = t1** _ t1, 1.0,1,... . When
the game starts running, the pursuer takes a measurement at tl = to +
At and compares this value with the saddle point solution and notices
the difference 4y(t,) = &x(%;) vhich is caused by non-optimal playing
of the evader's strategy. Since at this time the pursuer kmows his

own strategy

M(t) =0 at t = t, (4.3-6)

so at any time of the measurement

Ax(t) = A(t)ax(t) + C(t)av(t) (4.3-7)
Ax(to) =0 (4.3-8)
Ay(t) = ox(t) (k.3-9)

Assuming invertibility criteria of the Section 4.2, i.e., Theorem
4.3 for the linear system (4,3-7) ~ (4.3-9) hold. Since there is per-
fect information, by measuring the output and by knowing the saddle
point at each time &(tl) is computable by the pursuer., Having a
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sufficient history of observation time derivatives of Ax(t) can de
camputed at each time by forward difference approximation. Hence
Av(tl) i3 determined at each instant of measurement using (4.2-34)

and (4,2-35). So, at this time it is assumed that the evader continues
the game with tlfe same deviation fram the saddle point trajectory until
the end of the game,

v(t) = ¥ (t) +av(t,) for Yt e [t,t,) (4.3-10)

Now in this time interval v(t) is considered as an external

input to the system and a one-sided singular optimal control problem
with initial condition

x(t)) = %' (t,) + ax(t,) (4.3-11)

is solved by applying the proposed technique for singular problems.

The control u 1is obtained periodically at each time, Again at time
ta = tl + At another measurement is taken and compared with the recent
updated trajectory and procedure is continued until the geme is ter-
minated. By this technigue a suboptimai solution can be obtained.

If the evader's deviation from the saddle point solution is
sufficiently small then the pursuer's sequence of singular and non~
singular control will be the same, In this case the location of switch-
ing time and the value of singular control will be changed. If the
deviation is large enocugh the sequence of singular and non-singular
controls will b.e' changed.

o, % T “ulimls ¢
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k) In non-linear problems the system equations are linearized
ﬁ around a Jnown reference trajectory (usually saddle point trajectory).

¥, W

B L oCPLy
»

b )
’ L“k’" Sl

X = £(X,u,v) (4.3-14)

:(to) - x, (4.3-15)

h g

a
et

w ®
k4 1“

y(t) = x(t) (4.3-16)

Y

3 b

.":,

Assuming f(x,u,v) 1is continucus in X, u and v the linearized

'
5.
i
o
n‘:-

equations are

8k » T0x 4 £ tu + £ B¢ (4,3-17)
&(to) =0 (k.3-18)
vhere
f of Jf
fxsa* ’ fu-&-l-;* and fvsg*z_ (4.3-19)

Taking measurement of the cupput at same time interval at = 171

- ti, i=20,1,... and approximating

X = Xponl: = Xpaf )

W= Ureal = Uper

| Yte [to,tf] (4.3-20)
vev -V
real ref

&% = Yreal - Tret

95

v . . 'Y - LT e
P T te e te S e, %, AR A U Sl A A P
PP L s R I T R T e AT T S e e y o An

PRI I N IV B I Y S . : ‘.1,‘..._
T A SRR RO P P TS VL TR P75

-----
...................




of the measurement

. ' =0 (4.3-21)
:

N therefore

e . .

; 8 = £ 8x + f v (4.3-22)
£ ﬁ ex(t,) = 0 (k.3-23)
3 &y = &x (4.3-2)
\

alaa

Ky

Assuming the inverse to (4.3-22) - (4.3-24) exists the procedure will
be similar to linear case,

Note: This method requires relinearization and it is assumed that the
deviation is slight and sharp deviation does not occur frequently.
Although this does not restrict the method but practically reduces the
accuracy of the technique.

(40,41)

Anderson has proposed a near optimal method by taking
measurement of the states at equally time interval At and updating

the set of TPBVP obtained fram the necess.sry conditions for the saddle
point., But since the solutions obtained by this procedure are based on
the assumption that both players play optimally the solution cannot

be as good as the case that ome player knows the opponent strategy.

- | Jachinovitz(*T) used estimation techniques to deternine the evader's
control thémgh state measurement and achieved a better performance than
Anderson., But, his input estimation algorithm was very time consuming

Ay o it

‘ 80 that it was impractical for on line purposes. By inverse system
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technique input determination is done wery fast so it is convenient

for on line use,

.4t On Line Solution of the Example

We consider the numerical example in Section 3.5. Suppose the
evader due to the biased error in his control has same deviation fram
the saddle point trajectory. Assume this deviation is Av = [} such
that v(t) = v*(t) + .1 for 0 <t < 3.17 where v*(t) is his saddle

point solution. This control vw(t) 1s not kmowm to the pursuer unless

ke- determines it by direct observation and measurement of the output or
state of the system, In this example we assume there are perfect
measurements ;and y(t) = x(t).

At time ¢t = O the system starts rumning in real time, Some
measurements are taken at some amall time intervals and compared with
the saddle point trajectories. Consider the system (4.3-7) - (%.3-9),
since rank [C] = 1 for this example, from Theorem 4.3 the system 1is
exists. So, the evader's input deviation &v(t) 1is found from the
following relationship:

av(t) = (coc) "YeTax(t) - (cTc) tasx (4.4-1)

&y(t) = ox(t) (4.4-2)

In the following we find the difference between the saddle point
trajectory (starred quantities) and real trajectory.

- n
1"'..[" = "
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tw0| x5 .59847 | x,= .60706

t=0 xl = 59847 x, = 60706

and Av(.l) = 0.102, Taking another measurement at time t = 0.2 we
will get

v
o
:
i
g
:a
h‘
v
%
E

t= ,2 x; = ,T0009 x; = 10916

t=.2 x, = .T0420 x, = L2956

So,

t-.z &.1-.122 &.2301-0&0

and Av(.2) =.,1020, It is noticed that the computed deviation is .102
from the optimal open loop strategy. Therefore, using the external
control v(t) = v (t) + .102 over .2 <t < 3.17 with the initial con-
dition "1('2) = ,7T0420 and xa(.z) = 142956 a one-sided optimal
control problem results. This problem was solved and the pursuer's

control was computed as
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us=s -1 for 0<t<1.33

i . us= usingula.r for 1.33 <t < 3.17

- - vhere ug, 9., " xl(t) - &v(t) = xl(t) - .1
Tables (4.l-a) and (4.1-b) show the computer results of the computa-
tions.

As long as measurements show that &v ~ .1 we may consider this to

be the optimal solution.

Now in order to show the advantage of the method we compare the
results of the following 3 cases,

Case 1. Two players play optimal open loop (saddle point strategies).

Case 2. The evader deviates from his saddle point strategy but the pur-

suer plays his optimal copen- loop strategy.

Case 3, The evader deviates from hls saddle point strategy and the
pursuer plays his optimal closed loop strategy.

The following tables show the results of the computation for these

cases,

ov(t) [ tg L J

0 , 1.2 60243

Table (4.1), Case .';.. Two players play optimal open loop (saddle
point),

..............
...............................
..................................




The camputer prir+ out of Case 1 is given in Table (3.2-a,b).

For the Case 2 the results are

&u(t) t, J

+.1 1.2 -.86687

-.1 1.2 -081053

Table (4.2) Case 2. The evader deviates and pursuer Plays his optimal
open loop.

The computer printout of this case for Av(t) = .1 1is given in

Table (L.4t-a) and (4.4-b) and Figures (L4.1-4.2) show the controls and
trajectories,

For the Case 3 the results are

ov(t) tg J

+.1 1.33 -.990L45

-.l 1.09 -1.02390

Table (4.3) Case 3. The evader deviates and the pursuer uses his
optimal closed loop strategy dependent control.

The computer printout of this case is given in Table (4,5-a,b) and
Figures (4,3-4,4) show the eontrols and trajectories.

As we notice from the example, for the small deviation of the
control Av(t) = .1 the sequence of the pursuer's control is the same

but the swtiching time is increased from 1.2 to 1.33. Also the
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value of singular control is slightly changed (Figure L.3-a,b).

As the results in Tables (4.1) and (4.2) show .in Case 2, the
pursuer will achieve a better performance than Case 1., The results
in Table (4.3) show that in Case 3 the pursuer can achieve even a
better performance than Case 2,

We can also consider the cases that the evader's deviation does
not remain constant, but changes at some times, Two cases are con-
sidered. In the first case the evader deviates Av(t) = .1 for
0 <t <.605 and then from time ¢ = .605 on plays saddle point
strategy until the game terminates,

In the second case Avs ,1 for 0<t < .605 and &v = .05
for .605 <t < 3.17.

. In the following, again we calculate the control deviation Av
p by using the inverse system technique. For

For 0 <t < .605 we already computed Av and in this interval
Av was computed at the instant of time which was constant Zu(t) = .102.
At time t = ,605 measurement was taken and camparison was made

with the new saddle point reference trajectory. The results are

»*

t=.605 | x;=.80297 | x= 0679k

te= 605 | x =.80297 | == 0679

and in the next measurement we get
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Time x
1
== - ) TTTTeL.e T 9.859847
C."82C% Ce6?27T)
CelOrn 0.6547a
[TRE-Taalnd Ceb79%56
o R Ty { -3 14 4 TeTI212
Ce28”20 Ne.72240°
Ceo Jn020 N TaNnE1
Cea092” Ce?7%22
- e T TTTMWERNCC Ce79C0E
Q.ancCeC C 82288
C.70NCC 9.80529
®.830C0 Lo T997S
- = .t L0002 A, 7A386
jene2C Do 780ES
tel?*2CC. e T264¢C
1e2d002 068427

Tadle (L.k-a) Kumerical results for Case 2.

Time oY
T TTTITITT I ee e T T 068427
le2%%0" C.66101)
13%2CP2 CebB0114
1:384nAA 0082222
oo - ""l-.u-egs g.gggg;
1ea822% Ne
145020" 0.578%¢C
1. 8520¢0"F CeS6316
T T TTY. 6000 ” "0 e«8S5197
1« 6300 P e542a2
179000 C«5339%
— i 3o 7804 €+52699
- T fesrnen CeS2104
| Lk el O.516a8
. 1e9C7CH C.51287
— _1.95279 2,518
T T 2.0000 ‘DeS™61)
24050772 N .S3892
2.1 000" 92.529%%
2+18900C O0e8133"
- - T TT 2427900 T T D.5138¢
2257720 feS1747
2430000 C+5218%
) 2,352 0.52721
TOTTTTT TR RE
« 4%0"°C .
2+49999 CeS4029
2+54999 0.5567"
T TTTTT 7T tTT 24809909 "CeB68NY
2.64999 0.576180
2469999 c.587C0
274990 3.590862
ST TTITTTITT T T2479999 - ‘DeBYICOY
2. 14999 9.62396
2 + 089999 0.063768
24 94909 9.6521¢
- s " 2.99999 c.0671 0
3.040999 r.68299
3, 09099 N.69044
3.14998 2071658

Sem— ~ 3.1999n C.7T30380
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x2

Y Lok o
CoeB626PF
B.51083%
Cea7389
2.42938
95 38ane
*e34C29
Ce281"°7
Nel1617”
C.C7210
«CeT176€
-Ce1372°
219772
e 285493
«2e376A7
Ve 4HO6NMS

(Pursuer uses ua)

*2
«Co A6AHAS
-",4313e
=%, 3987}
=0 36°6A
-, 3269
-3,29391
=2.26A71
-6 230683
=2 2074%
=% 17974
«%. 154845
=-C. 12878
-3.10521
=0, 081131}
=.78632
Q.37 3
=CeT164S

Oe 02442
092377
Ce 00337
De 06162
Ce.CB0709
S.09738
f.11487
C.1313)
0e14793
%2.1636%
T 17953
De1946
C. 27947
Q. 22600
0423915
22331
2. 267SY?
Ce2014"
29532
e 3020
".3229%6
T+ 33599
% 3aQarpr
Ne.36204

Table (4.h<b) Mumerical results for Case 2 (Pursuer uses u,)
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1-a) Deviated evader!

1-b) Pursuer's saddle point control

Figure (4

Pigure (b
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state trajectories

Figure (4.2) Deviated open loop
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Closed loop Strategy Dep=ndent Solutions

. .. Time 5 T2 N ok
“Ce07002 0.553A1 0.66899 1.69729 1.60631
c.n3n0s 0.61629 0.58748 1:50871 $.38598
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) L __1sl@nds __0.69366 -Coea856 3.682°% cer1737
1223888 " 0:8301% - -Zgraeyss - —T.eay9a ~ T TBeDCTEY T
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Table (k.5-a) RNumerical results - Non-singular arc
Tine = X, ).1 12
IS T UL TR L T TR Y - - . e -~
1.380¢0 I3 L4 p-33--£4-F T.30333 2 -
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1.73000 oo asess 5.3 Ges2233 4N
- ———— - — =0 3 d -
“":’ggzg: ' —g-zvc’:: —2ni33895 - — --0,3369C - -— ~$:47 U
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3.22999 L.199fe 0.,71989 -0,N1959 %.*

Table (4.5-b) Numerical results - singular arc
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=) * *
L t= 700 x, = .80k93 X, = -.02674
5 t = 700 x) = .80515 x, = -.02197
2
.R: .
) So,
_55’: t = ,700 &x) = ,00022 &x, = JOONTT

t = .7T00 Ail = 00231 Aia = ,05210
and fram (4.4-1) &v(.7) = .052.
k_ By taking another measurement at time t = .75 we have
3 * *
. t = .750 xl = 080236 12 = -007661

t= 750 x, = .80267 X, = -.06934
' and the deviation in evader's control is a&v(.75) = .0S. !
- By this procedure Av = .05 is obtained and if we continue taking |
3
: measurement and calculating Av, we will see &v = ,05 for the rest

of the interval.
s Tables (4.6) and (4.7) show the performance and switching times
* for Case 2 and Case 3 when the evader changes his deviation during the
game,




av(t) 1 ¢t J

.1 for 0 < t < .605

. 1.2 .27519
0 for .605 < t < 3.17

.1 for 0 <t < .605

102 -¢05795
.05 for .605 < t < 3.17

Table (4.6) The evader deviates and the pursuer plays optimal

open loop
o&v ts J
1 0>t < .605
1.217 .21389
0 .605<t<3.17
1 0<t<.605
103 -.09583

Table (4.7) The evader deviates and the pursuer plays imal
closed loop strategy dependent ve omt
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CHAPTER 5

DISCUSSION, CONCIUSION AND RECOMMENDATION

5«1 Discussion and Conclusion

This dissertation is mainly concerned with singulavrity in differ-
ential game problems with linear systems. A class of generalized
pursuit-evesion games with linear state equations and bounds on the
control in which Hamiltonian is linear in pursuer's control was intro-
duced, This problem for some values of initial conditions and final
times can have an optimal solution with singular interval. A sufficient
condition for the existence of a saddle point has been obtained. Onme
of the advantages of this condition is that an extremal wvalue for each

one of the five parameters of the game, i.e,, t_, S, R, Q and C can

I
be determined through the inequality (2.6-18) (provided that all other
four parameters are known) to guarantee the existence of a unique
saddle point.

Due to the constraint on the control, in general, there 1is no
analytical solution for this class of games. Rapid and efficient
numerical techniques are required to solve physical and practical
problems with singular arcs and controls with discontinuities, An
indirect numerical method was proposed here, that could generate an
accurate and fast solution to a class of singular problems with linear
systems in which Terminal Error Function is only function of switching
times. In this method the sequence of singular and non-singular arcs

is estimated by physical or mathematical insight to the problem,
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3 Newton's method was used to iterate the T.E.F. on the switching
-.§ time. By linearization this tecimique was extended to solve the
\j same class of problems with non-linear systems. For a broeder class
, - of problems with linear systems in which T.E.F. is a function of
" both switching times and initial costates a second approach was
" proposed. In this approach we iterate T.E.F. on both initial
'  costates and switching times. As was monsidered in Chapter 3, the
" singular problems with order of higher than one, and also problems
¥ , with bang bang controls could be solved through the second approsach.
"' In singular problems with non-linear systems, since the junction
?_1 conditions are linearized to the first order, they may not be
satisfied precisely at the same time.
Because of accuracy and rapid convergence, the proposed
s technique is superior to some other numerical techniques for singu-
s lar optimal problems, e.g., Gradient Method, Epsilon Method or
B Quasilinearization-Epsilon Method. Scmetimes the approximate j
& solutions generated by some of these methods may provide information
S to estimate the sequence of controls and switching times,
: A numerical example was solved using Newton's technique and
with an appropriate initial guess, for the switching time, the solu-
‘ tion converged after six iterations.
': . By applying the closed-loop strategy dependent method same num-
‘ : erical solutions were obtained for the same example. From the numeric-
‘ al results we considered that if the evader deviates from his optimal
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open loop strategy, the pursuer can perform better, provided he uses
closed-loop strategy dependent policy. For applying this kind of
strategy the existence and stability of the inverse system 1s required.
The opponent'!s strategy at each instant of time can be rapidly deter-
mined by inverse; systems so that it is very appropriate for on-line
use., In this kind of closed loop solution, state or output measure-
ment should be taken periodically in order to generate an approximate
solution. If the measurement interval A4t gets smaller, a better and
more accurate solution is obtained. However, as At gets smaller the
computation time increases. Same considerations should be taken on the
choice of At so that camputational barrier is not encountered, This
interval should be smaller than the smallest time constant of the sys-

tem and also should be larger than computation time at each pericd.

5.2 Recommendations

The study of the literature in singular optimal control problems
shows that still much research needs to be done on the problems of
campatation of optimal singular control. The analysis of the junction
points should be studied further and same efforts are required for
locating the singular arcs and obtaining a sufficient condition for
partiaslly singular problems.

A general and accurate method for solving non-linear problems with
all orders of singularities is not yet available,

The present work stimulates further development for camputational

research in optimal singular control and differential game problems,
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The class of differential games in which singularity may occur
for both pursuer's and evader's control is an interesting topic for
compatational research,

In the case above closed loop strategy dependent solution is
another aspect of the research which possibly encounters the difficulty
of discontinuities in controls.

The extension of the differential dynamic programming-Epsilon
method or Quasilineasrization-Epsilon method to differential game
problems seems to be advantageous to overcome the difficulty of esti.-
mating the sequence of controls and initial switching times.

The extension of the proposed techniques to free final time
problems with terminal manifolds is suggested for further research.
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APFPENDIX A

A.l Proof of Theorem 2.1

Here we shall derive GIC necessary condition (-1) q[claq/d.te‘l Hu]
>0 for the case when q = 1.
Considering (2,1-1) to (2.1-3) from neighboring extremal theory

we will have
85X = fxbz + fu&u (A.1-1)
B\ = -H_Bx +.qu B + H_Au (A.1-2)
5:(1'.0) =0 ' (A.1-3)
ax,(tf) = hxzs'xltstf (a.1-4)

Fraom the second variation

% H_ H_ jrsx |
e X xu
8% = 3 (axnBx], + £ et [ J at
T to qu Huu_l du
(A.l-S)
subject to:
85X = Hubx + Hm&u 5x(t0) =0 (A.1-6)
5\ = .Hnsx - HnSx - Hm&u (A1-T)

Fram (A.1-7) it is obvious that
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&
N S
% Jt [8rT + m,Trz + mTqu + 8xX°H )5t =0 (A.1-8)
0

Integrating the first term by parts we obtain

tp

. ' t
% ft [-BAT8x + )a\fo + aﬁ{u + 5:“53)5:]&1; + % [5r25x) tg -0
o _

(A.1-9)

Fram (A.1-1) and (A.1-4)

t
b 4
% ft [-Bfﬂmﬁu + &uTHusz + erlinsx]dt + % [axlnnax] £ =0
0 -
(A.1-10)

Subtracting Equation (A.1-10) from Equation (A.1l-5) and simplifying

gives
t

£
827 = 3 L (BxTHm + 5>.Tnm+aumﬂuu )udt (A.1-11)
0

By differentiating the inside of the parenthesis and substituting froam
(A.1-6) and (A.1-7) we will get

g‘{ (bx.l:F%l + Gx’nﬂ)‘u-i- 5\11“8‘“1) = 52T(ﬁu)x + BKT(I:%)X-O- G_J.(ﬁu)u

(A.1-12)

% (bxl'l{m + éuTH\u + &THW) - be(.I.Iu)x + er(ﬁu)\-p &T(ﬁu)u

(A.1-13)
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Integrating (A.1-11) by parts together with (A.1l-12) we get
t

s
82 = - % ft [ox (R S sf(éu)x.p 8" (H,)_Jou at
0
&
+ % [(5:"‘3!111 - SxTHm-t- &g&uu)ﬁulltg
(A.1-1k)
where
e
bu, = ft Bu(t)at - (A.1-15)
0

By similar integration by parts of (A.1-14) and substituting fram
(A.1-12) and (A.1l-13) we will have

t
£
8% = % fto [azT(‘ﬁu)x + sxT('ﬁu); BuT:(ﬁu)ulﬁuz(t)dt

t
+ 3 [(ox"ny, + &aTH + B Jou,] t;‘ - texT(i) + (),

T te
+ 8\ (H\z)u&ualto (A.1-16)
te
Bu,(t) = ft bu, (t)at (A.1-17)
0

We knmow in a non-singular problem I-qu >0 which is a convexity
condition. For the singular case where Hu = Huu = 0 we consider a
special variatién as the following.
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» Pigure A-1. Special variation in control for deriving GIC conditions

%u (which is chosen to be a positive impulse followed by a
5:'; ] negative impluse), 5u, and %u, are shown in Pigure (A-1). We
: Imow that H 15 independent of u, so (ﬁu)u = 0, and as a result
of double impulse x = 8\ = O, from which all the terms in (A.1-16)

. involving 8x and 8\ vanish. We take (ix)u constant during the
2 period of %u, from the Figure (A-1l) it is obvious that
Py




b4

| (e eupat <o (A.1-18)

%

S0, in order to assure 8j > 0 it is necessary that

(H) <o (A.1-19)

This was for the case that u appears explicitly in the second
time derivative of Hu' For cases that u appears in the higher order,
the procedure of the derivation of the necessary conditions conceptually
is the same (see References (20), (31)).

Proof of Theorem 2.2, From (2.1-18) and (2.1-19) by hypothesis we know
that a(t) and 5(t) are contimuous and have at least r continuous
derivatives at ts.

Iet €& be a small non-zero real number such that ¢ g tE is a
Po:l.nt on the non-singular side of t‘s and ts - € 18 a point on the
singular side of t . Also, the linit of u(i)(ts +¢€) and
u(i)('l:s -€) vhen £ -0 are ur(xi)(ts) and ugi)(ts) respectively.

Define

® =K (A.2-1)

It K=2g+r then o5 w111l ve the lowest order derivative
of @ which is discontinuous at t,. We expand (9(‘!:.s + €) in Taylor
series about t;> and we know ¢ %0 on the singular subarc.

The furst non-zero term of the Taylor series contains the term

o(®),

.............................
....................




We know

k)

(x) o
P = 'E [a + Bul (A.2-2)

o(t, +E) = ? [d ")(t ) + Z‘ (’)s("")(t )u(i)(t )1 + 0(eH)
1=0

(4.2-3)

where leibriz's formula for differentiation of a product has been used
to differentiate bun.
On the singular subarc we have

o3 L g+ Pu, =0 (A.2-4)
So, we will get
r r
e L P Z"i”("”ui” (a.2-5)
1m0 |

By substitution fram (A.2-5) into (A.2-3) we will get

r
k o
ot +8) =& T DT erlPie) - ulPie )]+ oH)
i=0
(A.2-6)
If r>0

ur(li‘)(ts) - ugi) (t) L= 0pepeeepr-l  (A2-T)
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S0, (A.2-6) turns out to be

’

N ' k

‘ . q:(ts +€) = -;—, ﬂ(ts)[ur(lr) - ugr)] + o(sk) (A.1-8)
.' -

o= -sgn 2 (t, +¢) (A.2-9)

, u_(t) = oK(t) (A.2-10)

u:(li)(ts) = lim u(i)(ts + €) (A.2-11)

g-0 2
- ut(li) (ts) - d{(i) (ts) 1=0,09000sT
(A.2-12)

- On the singular arc, the left side can be expended as

r
b i -
% oK(t - €) -u(t, - €)= Zﬁ;.ei.'L [c'l(i(ts) - ugi)(ts)] + 0(e)*
N 10
(A.2-13)

& By using (A.2-7) and (A.2-12) the right hand side of (A.2-13) can
& be simplified to

[ r
% : oK(t, - €) - u(t, - €) = -(Ll%f—r [u:(lr)(ts) - ugr)(ts)] +0(ef\

(A.2-1k)

4‘:". s, r ) A.:'-‘-‘
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We subastitute from (A.2-13) into (A.2-6) and having K= 29 + r we

get

r 2%

?ty +€) = (-1)7 ST B ) oK(t, - €) - ulty - &)] + O(e)
(A.2-15)

From the application of minimum principle on the non-singular
subarc og=1 if cp(ts 4€) <0 and o= -1 if qa('cs +€) >0.

Therefore we have
(-1)7e®B(t ) [K(t, - €) £ u(t, - €)] <0 (A.2-16)

and fram GIC condition we have

(-1)%(t,) >0 (A.2-17)

Multiplying (A.2-16) by (A.2-17) we get
(-1)¥7e®%(s ) [K(6_ - €) 2 u(t, - €)] <0 (A.2-18)

Since |u(t)| <K(t) forall t ¢ [to,tf] and the singular arc is
assumed to be interior almost everywhere, the bracketed quantity
(A.2-18) rega.rdle'ss of + signs is positive, also ezqﬁz(ts) > 0.
Therefore

(-1 <o (A.2-19)

which implies gq+r 1is odd.
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B.1l Iinear Case

Assume t: to be a nominal switching time, we try to find gg-
s

due to the choice of t:. For this purpose we calculate

Ax(t,) Ax(t,) x(t,)
B COE I R 7O ) [ZU OIS I B
LAx(tf) L A(t,) \(tg)

x(t:)
+IaY(e )1 | |+ [eLthNE )] (Ba-2)
A(£3)
where

i i i
o(tg) = ¥(t,pt )85t (8.1-3)

o
For simplicity we drop t:,tf and to fram transition matrices

A LT
A%(t) ~ [2] [ 'r ] M = I'D'Ats (B.1-4)

-Q -A

A+RM  BN-CR™IcT

a¥(t.) ~ -[¥] At = E'Ats (B.1-5)
- e
+B8K
. AN(t,) = [ = Jm;s (B.1-6)
0

.........................
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Since x(to) is fixed Ax(to) = 0, and to find Ax(to), the

2 X 2n matrices &, ¥, ©, D, E are partitioned to n X n matrices
as the following.

1 %o 1 Yo o &
Q = ’ y = » e =
¥ ¥ oy ¥ ®% €
I L N LY
D= and E =
. |P22 Pz By Exp

Fram {3.1-3) we can obtain

Mtg) = Kx(t,) (B.1-7)
where K 1is an n x n matrix. So, we can have

A\_(ts) = ’fz_\.x(ts) (B.1-8)

From (B.1-8) and (3.1-17) Ax,(to) is obtained as

Ax(to) =B Bt (B.1-9)
vhere
B= (8, - T ) ) x(t)) + By a(t) + ok - 5x(t,) - Dyalty)]

. : (B.1-10)

Since the inverse in (B,1-10) elways exists, we will have
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v
o]
e

.

Ax(t,) ~ T ot (B.1-11)
b -
R B(t,) ~ ¥ Bt (3.1-12)

wvhere

LT [312’5' + (!ub'u + !lzﬁ'a)x(to) + (w]_llb'12 + Y12522)"(to)

: + B x(t3) + E(tl) + v mR] (B.1-13)
&

b M= (a8 + (2507, + ¥ 0,)x(%,) + (¥pyDyp + ¥, Dan)N(tg)

. Ea‘(":) . 522\(1;:) + ¥, BK (B.1-1k)

From (B.1l-1), (B.1-ll) and (B.l-12) we will get

ATEF' = (F - ST)| , At (B.1-15)
8

So, when At approaches zero we will have

OTEF -
Tt 1=¥-5Tl,
sts '!:8
By having TEF and %Tg for each switching time t: we can

8
use Newton's method to find ¢, at vhich |[TEF|| = 0, 4x(t,) and

Ax(tf) can be expressed in terms of At  to the second order in which
case by iterative methods we can get the optimal ¢ s vhere




,)4
%
B
2N
?
iy
EZ

2 [FEF) = 0 but 1t will be tedicus.
8

B.2 Non-Iinear Case

..............................

OTEF

In this section we are trying to find an expression for St

The solution to (3.2-12) and (3.2-13) is

Sx(t;) Bx( to)
- [o(ts,to)]
_BA(t) Bn(tg)

of
ax

[Q(tsyto)] = [Q(ts’to)]

e
A AR

and the solution to (3.2-1L) and (3.2-15) is

8x(t,) sx(t)
= [!( tf’ts) ]
Bn(t,) BA(ty)
where - -
2 f
= N

b

(B.2-1)

(B.2-2)

(B.2-3)

(B.2-L)

[#(t,t,)] = [2(t4,t,)) (B.2-5)
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!(tf,tf) o ¢ (B.2-6)

In order to express Sx(tf) and Bx(tf) we eliminate Ax(ts)
between (3.2-8) and (3.2-10) and Ax(ts) between (3.2-9) and (3.2-11)
we get

ex(t?) :':(1-.;) + x(t?) Bx(t?)
= Ats + (B¢2'7)

Bn(t) A(E5) + X(t3) BA(t])

From (B.2-7) and (B.2-1) we have

sx(t,) Z(t]) + x(t7) 0
- ot + gt sty)]
Ba(t?) A(tg) + n(t]) BA(ty)
(B.2-8)
and from (B.2-8) and (B.2-4) we obtaia

Bx(t,) 0
% = [o(t) 10t + 6(t) (B.2-9)
: (t,) BA(t,)
f . where

X(t]) + x(t])
At,) = [¥(test,)] . . (B.2-10)
Atg) + x(tp

B(t‘) - ['(tt’t')][’(t"to)] (3.2-11)

131

R e ele e . .. . v e A e A - P T TR A AT W LT e s R
e ‘.'0~:‘:':h(.‘g._‘Z;'J_-.f-“&l"_‘;“-:.‘~;'-:."\;" !":,":..'_!\_‘"_n.h_h"_!-':!“. -.l"ja".h:'_a".‘_'.-}.' e R A A ek e S P




LA s

v N Ty i M et e e
Y N e T e e e e S T T T e T

ORI

.......
........

By linearizing (3.1-3) arcund a nominal trajectory we will get

Pl i H ﬁ . r o
%;:: W W M) [0
. . = . |at (B.2-12)
= . . aa(tg) :
e, e, =
From (B.2-1) and (B.2-12) we obtain
0
= v(t,) Ot (B.2-13)
S\ (ty)
where
[0 ]
v(ty) = [ﬂ(t)]'l : (B.2-1k)
2m)
4 u -
- (H), (H),
B(t) = | 2 D |ty (8.2-15)
- -1
_Hﬁ )y (Hﬁ )NJ
From (B.2-13) and (B.2-9) we have
.. . 5x(t,) i
| = laltg) + e(8)v(t,) 10, = u(t )AL, (B.2-16)
Bx(tf)

From (3.2-18)
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ATEF = BA(t,) = =2 ex(t,) +H.0.T. (B.2-17)
ul(‘b,)
. Now partitioning p(ts) - where ul(ts) and "2('%) are
Ho(tg)
ATER ) At 2% (t.) At +0(at_ )2 (B.2-18)
= “"1( s s " g;é' Hol bg s ¥ 8 e
JTEF ATEP 1, % 4
gt— = E—T = ﬁ(ts) - 1 “a(ts) (3.2-19)
8 ti 8 ox
8

Therefore, similar to the linear case we can find an iterative rela-

tionship for the switching time.
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APPENDIX C
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L In this appendix first we express TEF, as a function of xi(to)
.“ and t:'. For this purpose we £ind the final states and costates of
- the system from (3.1-8) and (3.1-12) as
: ln::i(ti,) . x(t,)
: = (&) + [1(th)] (c.2)
where o(tl) 1s defined in Appendix B and
- ‘ v (th)
¥ (el Lym/ d
. (£5) = ¥(t,,t)N(t) = ) (c.2)
- v (tg)

¥, and ¥, are nx 1 vectors as & function of t.
By definition
N 2 : :
: n e [Rity) - ske1TNI(t,) - sxl(e)] (c.3)
From (C.1) we have
¥ . x(tf). = eux(to) - 812"“0) + ¥ (c.k)
: )‘(tr) - eax(to) + eaex,(to) + ¥V, (c.5)
G and fraw (C.2) - (C.5) we will cbtain
%

13k
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[ %y

S gy A
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T
Ny = B(E) + RN +a (5Bt (c.6)

[ s
4 2 8 2 2

.‘»3"-’1

q(t)). = [(8, - Sa,)x(ty) + (¥, - 8V,)1(e,, - 56,)
(c.T)

-4 b Yl o
CR-L iy LR
LO N

i(t:) = [922 - se]_z)T(e22 - selz)] (c.8)

B(tg) = (8y - S@Ix(ty) + (V, - 57,) 171 (8, - Sey,)x(ty)

+ (¥, - 8V))] (c.9)

Since Condition (3.1-3) is linear in states and costates it can be
expressed as

x( t:)

% i
[v(ts)] 4| =0 (C.10)

aty)

where V(s) is an m X 2n matrix is a function of system parameters.
From (C.10) and (3.1-18) we will obtain

x( to)
N (W(t3)] = 2(tg)] (c.12)

4 where

- Wl(t:‘)

G 1 i i
s wedl =] | = b iraede (c.12)
3 Wa ts
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2(¢3) = V(EH 1NEH] | (c.13)

wl and Wé are mX n matrices and T 1s an m vector. So,

we will have

-
-2
ey
B

.
:

Now (C.6) can be minimized with respect to A(t,) subject to
’ (C.14) at any ti.

wz(t:)x(to) - T(t:) - Wl(t:)x(to) (C.1%)

. For computation of r [ mdn h] at each ti we differentiate

s x(t)

(c.4) and (c 5) with respect to tg
ax(t,) 2 3 Mty
- —5— = ai.]?l‘ x(tg) + Blea MEg) + &5 3 to + 5

-_?:« S 8
.

‘;t;-

N (%) '5621 an(t
LW" 3, x(%) + FT Mtg) + 82 TT—* 3%
8
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1 4 0 1
) at each switching time t; \(to). —¢— ad min n(t>) are

[}
. H
S,

-
20

obtained so 32— {min n(ts)] can be computed, then by a Newton
s

]
3

5
"
i

iterative relationship the optimal switching time is reached,
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